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Motivation

• Applications on Goppa codes.
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Weierstrass semigroup
For a rational point P ∈ X , the Weierstrass semigroup of X
at P is defined by

H(P) := {n ∈ N0 : ∃f ∈ Fq(X ) with div∞(f ) = nP},

and the set G(P) = N0 \ H(P) is called Weierstrass gap set of
P.

• G(P) = {α1, . . . , αg} and 1 = α1 < · · · < αg ≤ 2g − 1.

• The semigroup H(P) is called symmetric if αg = 2g − 1.

• The curve X is called Castle curve if
H(P) = {0 = m1 < m2 < · · · } is symmetric and
#X (Fq) = m2q + 1.

Guilherme Chaud Tizziotti Based on joint work with H. Borges and A. SepúlvedaWeierstrass semigroup and Automorphism group of the curves Xn,r



Definition

Let (a1, . . . , am) be a sequence of positive integers whose
greatest common divisor is 1. Set d0 = 0, and define
di := gcd(a1, . . . , ai) and Ai := {a1

di
, . . . , ai

di
} for i = 1, . . . ,m.

If ai
di

lies in the semigroup generated by Ai , for i = 2, . . . ,m,
then the sequence (a1, . . . , am) is called telescopic. A
semigroup is called telescopic if it is generated by a telescopic
sequence.
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For a semigroup S, the number of gaps and the largest gap of
S will be denoted by g(S) and lg(S), respectively. The
following result will be a significant factor in determining the
semigroup H(P∞) of the curves Xn,r .

Lemma (C. Kirfel and R. Pellikaan)

If Sm is the semigroup generated by a telescopic sequence
(a1, . . . , am), then

lg(Sm) = dm−1lg(Sm−1) + (dm−1− 1)am =
m∑

i=1
(di−1

di
− 1)ai

g(Sm) = dm−1g(Sm−1) + (dm−1 − 1)(am − 1)/2 =
(lg(Sm) + 1)/2,

where d0 = 0. In particular, telescopic semigroups are
symmetric.

Guilherme Chaud Tizziotti Based on joint work with H. Borges and A. SepúlvedaWeierstrass semigroup and Automorphism group of the curves Xn,r



Let Aut(X ) be the automorphism group of X and
G ⊆ Aut(X ) be a finite subgroup. For a rational point P ∈ X ,
the stabilizer of P in G, denoted by GP , is the subgroup of G
consisting of all elements fixing P. For a non-negative integer
i , the i-th ramification group of X at P is denoted by G(i)

P and
defined by

G(i)
P = {α ∈ GP : vP(α(t)− t) ≥ i + 1} ,

where t is a local parameter at P. Here G(0)
P = GP and G(1)

P is
the unique Sylow p-subgroup of GP . Moreover, G(1)

P has a
cyclic complement H in GP , i.e.,

GP = G(1)
P o H (1)

where H is a cyclic group of order coprime to p.
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Theorem (M. Giulietti and G. Korchmáros)
Let X be a curve of genus g ≥ 2 over Fq, where q is a prime
power, and let G be an automorphism group of X such that
X has a Fq-rational point P satisfying the condition
|G(1)

P | > 2g + 1. Then one of the following cases occurs:
1) G = GP .
2) X is birationally equivalent to one of the following curves:
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(i) the Hermitian curve v(Y n + Y − X n+1) with n = qt ≥ 2
and g = 1

2(n2 − n)
(ii) the DLS curve (the Deligne-Lusztig curve arising from

the Suzuki group) v(X n0(X n + X )− (Y n + Y )) with
p = 2, q = n, n0 = 2r , r ≥ 1, n = 2n2

0 and g = n0(n− 1)
(iii) the DLR curve (the Deligne-Lusztig curve arising from

the Ree group) v(Y n2 − (1 + (X n − X )n−1)Y n + (X n −
X )n−1Y − X n(X n − X )n+3n0 with p = 3, q = n, n0 = 3r ,
n = 3n2

0 and g = 3
2n0(n − 1)(n + n0 + 1).

Where v(F (X ,Y )) is the plane projective curve with affine
equation F (X ,Y ) = 0.
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• Family of curves introduced by H. Borges and R. Conceição
- paper “Minimal value set polynomials and a generalization of
the Hermitian curve", to appear.

• An example is the following curve over Fqn :

H : Tn(y) = Tn(xqr +1) (mod xqn − x)

where, for a symbol z ,

Tn(z) := zqn−1 + zqn−2 + . . .+ z ,

and r = r(n) ≥ n/2 is the smallest positive integer such that
gcd(n, r) = 1.
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• We consider a set of curves Xn,r (which includes the curve
H).
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The curves Xn,r

Fix integers n ≥ 2 and r ∈ {dn
2e, . . . , n − 1}, with

gcd(n, r) = 1. Consider the polynomial

fr(x) := Tn
(
x1+qr) mod (xqn − x), (2)

where Tn(x) = x + xq + . . .+ xqn−1 , and define the curve Xn,r
by affine equation

Tn(y) = fr(x). (3)

It is easy to check that the polynomial fr satisfies fr(a) ∈ Fq
for all a ∈ Fqn , and that if n > 2, then fr(x) can written as

fr(x) =
n−r−1∑

i=0
(x1+qr )qi +

r−1∑
i=0

(x1+qn−r )qi
. (4)
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Theorem (H. Borges and R. Conceição)
The following holds:
1) The curve Xn,r has degree d = qn−1 + qr−1, genus
g = qr(qn−1 − 1)/2 and N = q2n−1 + 1 Fqn-rational points.
2) In the projective closure of Xn,r , the point P∞ = (0 : 1 : 0)
is the only singular point.
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The Weierstrass semigroup H(P∞)

• P∞ = (0 : 1 : 0) ∈ Xn,r

Lemma

Let z0 := yqn−r − xqn−r +1 and z := zq2r−n

0 − xqr +1 + xq2r−n−1y.
For the functions x , y , z ∈ Fn,r we have that
1) div∞(x) = qn−1P∞
2) div∞(y) = (qn−1 + qr−1)P∞
3) div∞(z) = (q2r−1 + qn−r−1)P∞.

Guilherme Chaud Tizziotti Based on joint work with H. Borges and A. SepúlvedaWeierstrass semigroup and Automorphism group of the curves Xn,r



Proposition

Let α and β be positive integers such that (n − r)α− βn = 1,
and consider the following functions in Fn,r :

w :=
α−1∑
i=0

z0
q(n−r)i −

β∑
i=1

(xqn−r +1 + xqn+qn−r )
qn(β−i)+1

(5)

and
t := xq2r−n+1−qw + zq + xq2r−n+1−q2r−n−q+1z . (6)

Then div∞(w) = (qn + qn−r)P∞, and
div∞(t) = (q2r − qn + qr + 1)P∞.
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Proposition

The curve Xn,r has a plane model given by

yqn−1 + · · ·+ yq + y = xqn−r +1 − xqn+qn−r
. (7)
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Theorem

Let H(P∞) be the Weierstrass semigroup at P∞. Then

H(P∞) = 〈qn−1, qn−1+qr−1, qn+qn−r , q2r−1+qn−r−1, q2r−qn+qr+1〉.

Moreover, H(P∞) is a telescopic semigroup and, in particular,
symmetric.
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Corollary

The curves Xn,r are Castle curves.
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Automorphism group

Let us consider the q2n−1 affine points P := (δ, µ) ∈ Xn,r(Fqn)
and all the elements γ ∈ Fqn such thatγq−1 = 1 if n is odd

γq2−1 = 1 if n is even .
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Automorphism group

Using that Xn,r is given by Tn(y) = fr(x), where
fr(x) = ∑n−r−1

i=0 (x1+qr )qi +∑r−1
i=0 (x1+qn−r )qi , one can easily

check that the set G of maps on Fn,r , given by

αγ,P : (x , y) −→ (γx + δ, γ1+qy + (δqn−r + δqr )γx + µ), (8)

is a subgroup of Aut(Xn,r), whose elements fix P∞, i.e.,
G ⊆ AutP∞(Xn,r). Based on the above definition, note that
the following subgroups of G :
N = {αγ,P ∈ G : γ = 1} and
H = {αγ,P ∈ G : P = (0, 0)} ∼= F∗q2−(n mod 2)

have order q2n−1 and q2−(n mod 2) − 1, repectively.
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Theorem

The group G is the full group of automorphisms of Xn,r .
Moreover, N = AutP∞(Xn,r)(1) and

G = AutP∞(Xn,r) = N o H .
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Lemma

AutP∞(Xn,r) = G .

Lemma

AutP∞(Xn,r)(1) = N and AutP∞(Xn,r) = N o H.
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Obrigado!
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