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(Abstract) 

The dynamics of ecological communities have been described by neutral and niche theories that are now 

increasingly integrated into unified models. It is known that a critical transition exists between these two 

states, but the spatial aspect of this transition has not been studied. Our aim is to study the spatial aspect 

of the transition and propose early warning signals to detect it. We used a stochastic, spatially explicit 

model that spans a continuum from neutral to niche communities, and is driven by the intensity of 

hierarchical competition. The transition is indicated by the emergence of a large patch formed by one 

species that connects the whole area. The properties of this patch can be used as early warning indicators 

of a critical transition. If competition intensity increases beyond the critical point, our model shows a 

sudden decrease of the Shannon diversity index and a gentle decline in species richness. The critical point 

occurs at a very low value of competitive intensity, with the rate of migration from the metacommunity 

greatly influencing the position of this critical point. As an example, we apply our new method of early 

warning indicators to the Barro Colorado Tropical forest, which, as expected, appears to be far from a 

critical transition. Low values of competitive intensity were also reported by previous studies for different 

high-diversity real communities, suggesting that these communities are located before the critical point. A 

small increase of competitive interactions could push them across the transition, however, to a state in 

which diversity is much lower. Thus this new early warnings indicator could be used to monitor high 

diversity ecosystems that are still undisturbed. 
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Introduction 

Much effort has been devoted to understanding the mechanisms of community assembly and dynamics. 

Classical studies emphasized deterministic processes based on niche differences between species; niche 

theory assumes that different species are regulated by various environmental factors and infer that 

diversity originates from spatial and temporal environmental heterogeneity (Tilman 1982, Chesson 2000). 

More recently, the emphasis has shifted to stochastic mechanisms in the form of the Neutral Theory of 

Biodiversity and Biogeography (Hubbell 2001). The neutral theory assumes that individuals of all species 

are functionally equivalent, and proposes that diversity originates from a balance between immigration, 

speciation, and extinction. The neutral theory has been proposed as a parsimonious formulation that can 

provide new insight into the patterns of community assembly (Hubbell 2005). In spite of its simplicity, 

the theory can predict some community metrics very well, like the species abundance distribution (SAD) 

(Volkov et al. 2007, Rosindell et al. 2012), beta-diversity (Condit et al. 2002) and species-area 

relationships (Rosindell and Cornell 2009, O’Dwyer and Green 2010). 

The neutral theory has generated a great deal of controversy, mainly due to its equivalence assumption 

(Chave 2004, Clark 2012). One way to resolve this is to understand that at a local scale, niche differences 

between species seem to be important for community dynamics, but at broader scales differences in 

specific traits are not essential to predict community patterns (Chave 2004, Matthews and Whittaker 

2014). Finally, a unified view has arisen that accepts that both kinds of mechanisms are present at the 

same time, shifting the focus to quantifying the relative importance of these in natural communities 

(Gravel et al. 2006, Zhou and Zhang 2008, Vergnon et al. 2009, Jabot and Chave 2011, Martorell and 

Freckleton 2014, Kalyuzhny et al. 2014). 

The problems of pattern and scale are critical in ecology (Levin 1992, Chave 2013), because patterns that 

seem stochastic at one scale may reveal structure at another scale. The concept of pattern is related to 

some sort of repetition that our brain can detect; when this pattern occurs at different scales we talk about 

scale invariance or self-similarity, characterized by power laws. These patterns could be produced by 

critical phase transitions described by percolation theory (Stauffer and Aharony 1994). These kinds of 

spatial phase transitions were first introduced in ecology in the framework of landscape ecology (Loehle 

et al. 1996) and habitat fragmentation (Bascompte and Solé 1996). 

Percolation is characterized by the presence of two phases defined by some macroscopic features, such as 

the presence or absence of vegetation in arid ecosystems (Kéfi et al. 2007). These phases are linked by a 

critical point were a sudden transition happens and a large spatial pattern emerges. To illustrate the 

mechanism behind a phase transition, we define first a two-dimensional landscape composed by a grid of 

sites. Each site is connected to its four nearest neighbors with probability  . If   is small   there will be 

only a few connected sites that form clusters. When   increases, the clusters become larger because each 

site is connected with higher probability to its neighbors. Finally, there is one value of   at which a single 

cluster spans the entire landscape. This spanning cluster has a self-similar structure and is produced by 

local interactions (Solé and Bascompte 2006). The clusters are usually called 'patches' in the ecological 

literature, and here we continue to use patches to refer to the clusters that connect through their four 

nearest neighbors. 
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Several different ecological spatial models exhibit critical behavior related to the degree of disturbance 

(Pascual and Guichard 2005). Some of these models show robust criticality, a particular kind of criticality 

for ecological systems, in which self-similarity is present for a wide range of parameters and does not 

necessarily involve drastic changes in the biological variables of interest (Roy and Pascual 2003). This 

kind of criticality has been suggested for arid ecosystems (Solé 2007), in which a sudden shift towards 

desert conditions might occur when rainfall decreases (Scanlon et al. 2007) or also with more intense 

grazing (Kéfi et al. 2007). The mechanism producing self-similarity is the positive effect produced by 

local facilitation, e.g. the establishment of a new seedling is more likely near the parent plant. Another 

example of an ecosystem exhibiting criticality are savannas, where the transition occurs between tree and 

grass cover (Abades et al. 2014). In critical phenomena, the transition is produced by the capacity of the 

system to transmit some signal or information. In savannas, when the proportion of grass approaches a 

60%, fire can spread across the landscape; conversely, if there is less grass to act as a fuel, fire cannot 

spread (Staver and Levin 2012). Thus an increase in the proportion of trees, due to a change in 

environmental conditions, can create positive feedback mechanisms resulting in the encroachment of 

savanna ecosystems (Abades et al. 2014). 

 

The self-similar structure of the spanning patch is characterized by a power law patch size distribution, 

but neutral models can produce power law patch distributions without being near a critical state 

(Houchmandzadeh and Vallade 2003), so the detection of these kind of patterns does not imply a phase 

transition. Moreover, sudden changes between neutral and niche dynamics have been described for non-

spatial models (Zhou and Zhang 2008, Chisholm and Pacala 2011, Kalyuzhny et al. 2014), and Fisher et 

al. (2014) demonstrated the presence of a phase transition for neutral-niche models. However, the spatial 

properties and consequences of this transition have not been studied. 

 

Here we study the phase transition between neutral and niche dynamics from a spatial point of view by 

applying methods of percolation theory. We will use a spatially explicit neutral model where niche 

dynamics is represented as a competitive hierarchy (Saravia 2015). Our first objective is to demonstrate 

the existence of the phase transition in our spatial neutral-niche model triggered by competition intensity; 

we show that the phase transition is determined by the geometric characteristics of the species patches, 

and that the niche state that emerges after the critical point has lower species diversity and richness. Our 

second objective is to define early warning indicators based on the dynamics of patches. Finally, we apply 

our new early warning indicators to the repeated censuses of a 50-ha forest dynamics plot of Barro 

Colorado Island (BCI) in Panama. 

 

Methods 

First, we define the spatial explicit neutral-hierarchical model; then we explain how we characterized its 

critical behavior in terms of percolation theory and how simulations were performed. We analyze early 

warnings for this critical transition and apply the same techniques for BCI plot data. We refer interested A
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readers to more extensive introductions to percolation theory in an ecological context (Solé and 

Bascompte 2006, Oborny et al. 2007). 

The spatial stochastic model 

This model represents a continuum between a neutral model and a niche model of hierarchical 

competition, in the same spirit as Gravel et al. (2006), and others (Zhou and Zhang 2008, Chisholm and 

Pacala 2010). The model is a stochastic cellular automaton (CA), also called an interactive particle system 

(Durrett and Levin 1994). In these models space is discretized into a grid and only one individual can 

occupy a particular position. Each position represents an area fixed by the investigator to mimic the real 

system. Time is continuous, so the update of the model is asynchronous. Sites are selected at random and 

to perform one complete time interval   sites have to be updated, where   is the size of the grid (Durrett 

and Levin 1994). The units of the grid are arbitrary but for using parameters compatible with field studies 

we choose a side of 1 meter. 

We use periodic boundary conditions, which makes the landscape a torus: sites on the top edge of the grid 

are neighbors of those on the bottom edge, and sites on the right edge are neighbors of those on the left. 

With this choice we avoid edge effects, this is equivalent to treating the grid as embedded in a large 

community. The size of the community is given by J = dimX x dimY, where dimX and dimY are the 

dimensions of the grid. Thus J is the maximum number of individuals in the simulated area. As in a 

classical neutral model, there is a metacommunity, i.e. a regional species pool assumed to be very large 

and invariant in ecological time scales (Hubbell 2001). All individuals have the same parameters, unless 

they belong to different species (Hubbell 2001), and each species is assigned an indicator number that is 

used to define a competitive hierarchy. There are only two possible differences between species: 

 They may have a different frequency    in the metacommunity and also different abundances in the 

local community. 

 Hierarchical competition: species with lower numbers have a probability of replacing species with 

higher numbers as in (Tilman 1994). Thus a species with number 1 has a probability of replacing 

species with number 2 and greater. The species with number 2 can replace species starting from 3. 

The probability of replacement ( ) is a parameter; when it is 0, there is no replacement and the 

model behaves like a neutral model without competitive hierarchy. The parameter   is also referred 

as the intensity of competition, because when     the intensity will be maximal: whenever two 

individuals of different species meet there will be a competitive displacement. When   is lower, this 

will not happen in all encounters, and the intensity of competition will decrease. 

The colonization-competition and other possible trade-offs are not explicitly included in the model. 

However, a colonization-competition trade-off can be established if species numbering is arranged in 

inverse order to its frequency    in the metacommunity. If colonization-competition trade-off is included, 

the most competitive species (with number 1) will have the lowest migration rate and the less competitive 

will have the highest migration rate. 

There are four processes included in the model: death, local dispersal, migration, and competition. After 

setting initial conditions the following events can happen: A
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 If the selected site is empty: 

1 With probability m an individual of a species i can migrate from the metacommunity, at a 

rate proportional to its frequency    in the metacommunity. 

2 With probability 1-m the site could be occupied by a new individual that disperses to the 

neighborhood with a dispersal kernel. Here we use an inverse power kernel with average 

distance   (Marco et al. 2011): 

  ( )  
   

    
(

 

    
)
  

 with      
   

   
     where     and       . 

 where  ( ) is the probability that an individual disperses a distance   from the parent. In all cases 

we used       . 

 If the selected site is not empty: 

3 Individuals die at a rate   

4 When an individual dies, it is replaced by a migrant from metacommunity with probability 

  and with probability     by an individual from the neighborhood as in (1) and (2) . 

Once the grid is full it stays full, because when an individual dies it is immediately 

replaced by another. This is called the zero-sum assumption in neutral models. 

5 Surviving individuals can be replaced by individuals from the metacommunity or 

neighborhood as in (4) based on the competitive hierarchy where an individual of species 

  can only replace an individual of species     with probability  . Thus a hierarchical 

ordering of species is established. When this probability is zero, the model behavior 

becomes neutral. 

In the simulations, the events are evaluated in the order specified by its numbers. The parameter   has 

the same meaning as in the spatially implicit neutral model, but there are two fundamental differences: a) 

individuals that disperse by the edges of the lattice produce the same effect as  , and therefore as local 

dispersion already accounts for part of migration, the values of   are lower for our spatially explicit 

model; b) individuals who colonize the grid due to   do so in random positions, disrupting the patch 

structure produced by local dispersion. 

The model was developed using the C++ programming language and its source code is available at 

https://github/lasaravia/neutral and figshare http://dx.doi.org/10.6084/m9.figshare.969692. 

Percolation and simulations 

     

To characterize our model in terms of percolation theory, we need to define an order parameter that 

depends on a tuning parameter (describing an external control) that can be continuously varied. We 

defined the tuning parameter as the replacement probability  , and the order parameter as the probability 

that a patch of one species connects the landscape, called the spanning cluster probability    . 

Percolation is produced when a spanning cluster is present, meaning that there is at least one patch of one 

species that spans from one edge of the system to the opposite edge. We calculated the patches for all 

species using a modified Hoshen–Kopelman cluster labeling algorithm (Hoshen and Kopelman 1976) 

with a neighborhood defined by the four nearest sites (Von Neumann neighborhood) available at 

https://github.com/lsaravia/Clusters. A method to obtain the percolation point is to estimate the value of A
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the tuning parameter   at which     is 0.5 (Ziff and Newman 2002). To obtain     we measure the 

frequency of simulations where a spanning cluster appears. We used one snapshot of the spatial pattern to 

make our results more compatible with field studies; hence we measure the patch size distributions after 

the model reach a steady state between 5000 and 30000 time intervals (as defined above). We checked 

that the model reached a steady state by a series of preliminary simulations using the same range of 

parameters as for the experiment. We calculated the average Shannon diversity index ( ) of the last 1000 

time steps for runs with different total time (3000,5000,10000,20000 and 30000 time steps). Then we 

compared the values of the average   for consecutive total times (3000 vs 5000, 5000 vs 10000,) and we 

observed if the last   range was similar to the previous. If the range keeps constant, we take the minimum 

time as the steady state simulation time. We also checked the steady state by visually inspecting the   

time series. 

The size of the lattice affects the value of the critical point    at which the transition occurs; in small 

lattices     is non-zero for values of   below the critical point   , this means that   patches that connect 

the entire lattice appear by chance. Therefore, to obtain an asymptotic estimate for    we performed a 

finite size scaling analysis. For this, we run simulations for different lattice sizes (Side = 128, 192, 256) 

and obtained asymptotic values by regressing    against   ⁄     ; the intercept becomes an estimate for 

a lattice of infinite size, denoted by   
    

 (Stauffer and Aharony 1994, Sornette 2000). 

We determined critical points for two different metacommunities: a) One with a logseries species 

abundance distribution, the most common distribution that fits experimental data (White et al. 2012). 

With this metacommunity we included a competition-colonization trade-off by arranging species numbers 

in inverse order as it is frequency    in the metacommunity. b) A uniform species distribution, in which 

all species have the same probability of colonizing the local community. The parameter   represents a 

long-distance dispersal event from the metacommunity but can also be interpreted as a speciation 

parameter (Chave 2004, Rosindell and Cornell 2009). The values of the   parameter (Table 1) were at 

least two orders of magnitude higher than realistic speciation rates (Rosindell and Cornell 2009) as it is 

not our aim to interpret the results in an evolutionary framework, only to show the influence of different 

metacommunities. 

The parameters used were compatible with published results from tropical forests, but we do not intend to 

encompass all the possibilities: the number of species in the metacommunity was between 16 and 320, 

and the mean dispersal distance was between 13-53 meters (Condit et al. 2002, Anand and Langille 

2010). It has been suggested that fat-tail dispersal kernels give more realistic results (Rosindell and 

Cornell 2009, Seri et al. 2012) so we used an inverse power law distribution with exponents always 

greater than two (Table 1). The parameter   has a range from 0.0001 to 0.01; note that the spatially 

explicit parameters do not have the same values than the parameters estimated for the spatially implicit 

model. We used the formulas from Etienne & Rosindell (2011) to calculate the equivalence of spatially 

explicit parameters with the neutral theory spatially implicit parameters   and   (Appendix Table S1). 

The range of the parameter   is similar to the one used in other studies of neutral spatially explicit 

models (May et al. 2015). 
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The parameter   is varied across all the range between 0 and 1 to determine the critical point. In the 

region where we suspected the    to be located (near 0), the steps were very small (0.0001), and greater 

(0.1) in regions unlikely to include   . To calculate the value of    at which         we interpolate 

linearly from the four values of   that have the nearest values of     to 0.5. 

All simulations started with a lattice filled with individuals at random positions, following the same 

abundance distribution as the metacommunity. For each parameter combination we performed 50 

simulations. Thus, we calculated the     as the number of times we observed a spanning cluster divided 

by the number of simulations. The analysis of the model output was done in the R statistical language (R 

Core Team 2015) and the scripts are available at GitHub https://github.com/lsaravia/CriticalTransition 

and figshare http://dx.doi.org/10.6084/m9.figshare.2007537. 

We estimated the critical point using a wide range of parameters to test that the transition is not confined 

to a small region in the parameter space. In addition, we analyzed changes in the critical point to give us 

an idea of the sensitivity of the simulated communities to changes in the intensity of competition. This 

could be used to compare the predictions of the model with the behavior of real communities where a 

change in the competitive intensity has been documented. We analyzed the critical point for infinite 

lattices (  
 ) varying three parameters of the model, one at a time: the migration  , the dispersal distance, 

and the number of species in the metacommunity. The parameter   was fixed at 0.2, a higher mortality 

rate than observed for tropical forests, but because of the zero-sum assumption the only effect of this is to 

increase the turnover rate of species and thus reduce the time needed to reach a steady-state of the model. 

To change the dispersal distance we varied the power exponent of the dispersal kernel   (Table 1). We 

used as a baseline the parameters listed in the first row of table 1, so if we vary  , the other parameters 

are fixed at        and the metacommunity number of species to 320. 

Communities and early warnings signals 

To compare community changes near and far from the critical point    we calculated the species 

abundance distribution (SAD) and the rank abundance distribution (RAD). RADs are equivalent to 

cumulative distributions and thus are a robust way to visualize the SAD without losing information 

(Newman 2005, Etienne and Rosindell 2011). We also calculated richness as the number of species ( ), 

and the Shannon diversity index:    ∑   
 
     (  ), where    is the relative abundance of each 

species. 

At the critical point there is a species with a large patch that dominates the landscape: the spanning 

species, the species with the largest patch (    ). Before the critical point, the system is in a subcritical 

state, and the species with the largest patch could be the spanning species. After the critical point, the 

system is in a supercritical state and most of the landscape is occupied by the spanning species. The 

fraction of the cover of the largest patch (    ) can be used as an index to determine if the system is in a 

subcritical or supercritical state. The      is calculated as the size of the largest patch divided by the area 

of the system. If we are working with natural systems the total area might not be precisely calculated; i.e. 

if we included a non-habitable area we will overestimate the total area, and the Smax will be 

underestimated. Thus, we also divided the largest patch area         by the total area occupied by the 

species, as this represents the proportion of the largest patch to the total area occupied by the same species A
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     . The      and       are useful qualitative indices that can be used to detect if the system is in a 

subcritical or supercritical state, but do not tell us if the system is near or far from the critical transition. 

The closeness of the critical transition can be evaluated using the temporal fluctuations of      (Corrado 

et al. 2014). We calculate the      fluctuations around the mean           ( )        , and 

       using the same formula but with      . The variance of the fluctuations of the largest patch 

      reaches a maximum at the critical point but a significant increase occurs well before the system 

reaches the critical point (Corrado et al. 2014). Also, before the critical point, when the skewness of the 

distribution of       and        should be negative, because fluctuations below the average are more 

frequent (Corrado et al. 2014). We calculated the fluctuations using the last 50 points of the time series 

with the same length and a similar range of   as the ones used for the estimation of the critical point. We 

classified them  as before, near and after the critical point, and for each   we performed ten repetitions. 

For spatial systems with patch structures another possible early warning indicator of the transition is the 

distribution of patch sizes or clusters (Kéfi et al. 2014). From percolation theory we expect that the 

distribution of the species with the largest or spanning patch should be a power law ( ( )     ) or a 

power law with exponential cutoff ( ( )         ) (Stauffer and Aharony 1994, Pueyo 2011, 

Weerman et al. 2012). Besides that, we already know that the patch size distributions of species in 

spatially explicit neutral models follow a power law corresponding to the subcritical part of our model 

(Houchmandzadeh and Vallade 2003, Campos et al. 2013). Thus the power law distribution of patch sizes 

should be present from     to near after the critical point   . As an alternative model we fitted an 

exponential distribution ( ( )      ). As is usual in percolation studies we excluded the spanning patch 

from the estimation (Stauffer and Aharony 1994). Before the critical point we may not have a spanning 

species and thus we fitted the patch distribution of the species that has the largest patch. 

We measured the patch size distribution from simulations in a range of   from neutral to niche 

communities, using a smaller set than the ones we used to estimate the critical point:  ={0.0000, 

0.0001,0.0002, 0.0003, 0.0005, 0.0010, 0.01}, the other parameters were from the first row of table 1 and 

a Side of 512 sites. We performed 30 simulations that run near the steady-state time, and then collected 

the patch sizes of all species. In some simulations, the spanning cluster occupies a considerable 

proportion of the landscape, and in consequence very few patches remain to estimate a distribution. We 

only fitted a model when there are at least 20 patches and five different patch sizes. 

We fitted the mentioned discrete distributions using maximum likelihood methods (Clauset et al. 2009), 

and then calculated the Akaike information criteria corrected for small samples (    ) to select the best 

model (Burnham and Anderson 2002, Burnham et al. 2011). All analyses were performed using the R 

statistical language (R Core Team 2015). The fitting was made using code provided by Cosma R. Shalizi 

for the power law with exponential cutoff and the package poweRlaw for the other distributions (Gillespie 

2015). The complete source code for statistical analysis and the outputs of the model is available at 

GitHub https://github.com/lsaravia/CriticalTransition and figshare 

http://dx.doi.org/10.6084/m9.figshare.2007537. 
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Application of early warnings to BCI forest data 

The Barro Colorado Island forest plot is a 50 hectare rectangle (1000 m x 500 m) of tropical forest located 

in Panama and managed by the Smithsonian Tropical Research Institute (Condit 1998). In this plot, all 

individuals   1 cm diameter at breast height (dbh) of free standing woody tree species have been 

measured and identified. Since the first census at 1982-1983, there was a second census in 1985, and then 

every five years; to date there are seven publicly available censuses. We estimate the patch distributions 

of each species for each census to apply the same set of early warning used for the model to check if there 

is any evidence of a critical transition. To estimate the patch distribution we first discretized the positions 

of the trees to fit them in a lattice. After that, we estimated largest patch statistics and fit the patch size 

distributions models for each year. To check for a tendency in the fitted parameters we performed a 

median regression. 

To estimate the patch distribution we need to choose a length scale to make the discretization. If we 

intend to fit all the individuals of all species on a different site the scale should be around 0.10 m for this 

plot, as the plot is 1000m x 500 m, resulting in a lattice of 10000x5000 sites with a great proportion of 

empty places. This will lead to a majority of isolated sites with almost no patches. If we use a bigger scale 

e.g. of 0.5 m, more than one individual of possibly different species may occupy some of the sites; in 

these cases, we have to decide which one will occupy the site. We establish that the one with greater dbh, 

no matter the species, will be the one that occupies the site, thus favoring more mature individuals. 

In this process, we have to find the scale that gives us the maximum occupation of the lattice without 

losing the species structure of the community. Our criteria to stop enlarging the scale is that the species 

abundance distribution (SAD) of the discretized lattice should not be statistically different from the 

original SAD. To test this we use the Anderson-Darling statistic with a randomization procedure using the 

R package kSamples (Scholz and Zhu 2015); this statistic has proven powerful to detect different kinds of 

communities using SAD (Saravia 2015). With this procedure we obtained a scale of 1 m, and thus used a 

lattice of 1000x500 sites. 

Results 

We observed a typical pattern of a second order continuous phase transition (Figure 1) which means that 

at the critical point    one species percolates through the lattice: a mono-specific patch spreads from side 

to side, which is called the spanning patch or spanning cluster. As expected from percolation theory 

(Stauffer and Aharony 1994, Sornette 2000) the probability of a spanning cluster (   ) is greater than 0 

for      and small lattice sizes, for bigger lattice sizes     is 0 for      and jumps quickly to 1 for 

    ; this clearly defines the two phases or states of the system. These two phases can be detected by 

analyzing the largest patch relative to the total area      before the critical point      is in the range 

0.002-0.15, and after the critical point      is greater than 0.92. The largest patch relative to the total 

species' area       has the same behavior, with a range of 0.009-0.23 before, and greater than 0.96 after, 

the critical point (Appendix Figure S1 and Table S2). 

The critical point   
  is the value of the intensity of competition where the phase transition occurs at 

infinite lattices, obtained from the finite-size scaling analysis. The actual values for finite-size lattices A
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may vary, but we   
 observed that in general, the transition happened at very low   values (Appendix 

Table 3). That means that low levels of competition are needed for a phase change, and this produces a 

sharply decrease in Shannon diversity. This is observed for both logseries and uniform metacommunities. 

The values for   
  are very similar for logseries and uniform metacommunities. 

We analyzed how the critical point changes varying model parameters, and thus the validity of our 

findings is restricted to these ranges (Table 1). Most of the   
  values fall in the range 0.0002-0.0003 

(Appendix Table S3). Taking into account the standard error (Appendix Table S3), we conclude that there 

is not much variation of   
  with regard to dispersal distance, number of species in the metacommunity, 

or the type of the metacommunity. The migration parameter  , instead, produced a variation in   
  from 

around 0.0003 to 0.006. When   is bigger there is more influence of the metacommunity on the local 

community. This is because the migration process adds individuals in the local community with the same 

species proportion than the metacommunity, favoring the less competitive species in both types of 

metacommunities simulated. Additionally, the individuals that migrate from the metacommunity have 

random positions and thus mix into the local community and break the species patches. The combined 

effect is to make the   
  higher. The effect becomes important when       , which results in the 

biggest   
  (approximately 0.006, an order of magnitude greater than all the other cases) (Appendix Table 

S3). 

When the competitive intensity surpasses the critical point (  ), the space left by the spanning species 

decreases quickly, so the Shannon diversity ( ) collapses, but some individuals can escape the 

competitive displacement and thus richness ( ) shows a more gentle fall (Figure 2). The same kind of 

patterns of   and   are observed with all the range of parameters of table 1; the only difference is the 

value of    and the absolute values of   and  . After the critical point a spanning patch appears (Figure 

3) that occupies a great portion of the landscape. The number of species is almost the same, and   drops 

quickly. The effect of the competition-colonization trade-off can be observed in the logseries 

metacommunities: before the critical point there is a small increase in   and also in  . This is because in 

the long term, the average SAD from a neutral community will tend to match the metacommunity SAD, 

for     (Houchmandzadeh and Vallade 2003). Thus a small degree of competition lowers the density 

of species with high colonization rate, which were the most abundant, and raises   before the critical 

point. The effect of the trade-off can also be observed in  , by the same mechanism there is a small 

increase in   before the    (Figure 2). Logseries communities also have fewer species than uniform 

communities because in the neutral phase poor colonizers have small populations and extinguish due to 

stochasticity. Comparing logseries with uniform communities at the same   , they always have fewer 

species. 

 

The differences between logseries and uniform communities also appear in the RADs (Appendix figure 

2). Before the critical point, logseries communities have a convex shape reflecting that abundances of 

species with ranks from 10-30 have a slightly higher frequency than uniform communities. Species with 

ranks more than 40, which are rare species, have in contrast a more uniform frequency than do logseries 

communities. After the critical point the curvature is inverted (becomes concave) for both kind of A
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communities. The change observed in RADs is more gradual than the observed in   or in the      and 

     . 

The largest patch fluctuations       showed a much greater variance near the critical point than before 

or after (Figure 4A), and the same pattern is observed for        (Appendix figure S6). The skewness of 

      have a positive value before the critical transition and a negative value after it, but it can have both 

positive or negative values when the critical transition is happening (Figure 4B). This means that these 

indicators should be combined to obtain an evaluation of the closeness to the critical point. If we observe 

a low value of      or       then we know that the system is before the critical point, but if       

shows an increase and skewness becomes negative we can conclude that the system is about to suffer a 

critical transition. 

The fits of patch size distributions showed that the most frequent best model ---with lower     ---was the 

power law with exponential cutoff (54%). The pure power law was found best in 21% of the cases and the 

exponential model was never the best (Appendix Table S4). The rest of the cases (25%) correspond to 

simulations with   greater than   , in which one big spanning patch exists and there are few other patches 

of the same species, so a distribution model can not be fitted following the criteria stated in the Methods. 

Patch size distributions have been used to detect the closeness of the critical point when the spatial 

patterns are non-periodic or irregular as here (Kéfi et al. 2014). Two kinds of patterns have been 

suggested as early warnings of a critical transition: a switch from a power law to a power law with 

exponential cutoff (Kéfi et al. 2007, 2011); and an increase of the   parameter---assuming that the power 

law with exponential cutoff is a plausible model for all the cases (Pueyo 2011). We did not find evidence 

of a switch between power law and power law with exponential cutoff when the system approaches the 

critical point, as the power law with cutoff always had a greater percentage, except when   was far from 

the critical point and only a few simulations could be fitted (Appendix figure S3). The exponent ( ) of 

both models showed a decreasing tendency when the critical point is approached, but there was a 

substantial amount of variability which makes the use of   dangerous as an early warning (Figure S4). 

The exponential decay rate parameter ( ) also exhibited a tendency to decrease when the critical point is 

approached (Figure S5), and there was a high degree of scattering. Thus these two indicators should be 

used with care and in combination with the previous ones. 

The calculation of early warnings for the BCI data showed the following values for the mean 

    =0.00008, the mean      =0.04, the variances      =1.3e-10 and       =0.0014; all of these 

were low values that situate the BCI before the critical point. The skewness of      =0.52 was positive, 

and for       =-0.36 was negative. In all the years the best model for the patch size distributions was 

the power law with exponential cutoff, and the exponent   and the decay rate   showed a decreasing 

pattern (Appendix figure S7 & S8). 

Discussion 

We have described, to our knowledge for the first time, a spatial phase transition between neutral and 

niche ecological communities. The power laws of patch size distributions observed in this model are not 

only produced at the critical point but are present over the whole range of the control parameter  . This A
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broad range of power law behavior is characteristic of non-equilibrium phase transitions (Ódor 2004) and 

can also be produced by spatial heterogeneity (Martín et al. 2015). Some ecological models display this 

kind of behavior, and it has been termed 'robust criticality' because of the permanence of the scaling laws 

(Pascual and Guichard 2005). These models all include disturbances or stress, and with the increase in 

disturbance levels an increase in the exponential decay ( ) of patch sizes is observed. This increase can be 

the result of a switch from a power law to a power law with exponential cutoff model (Kéfi et al. 2011) or 

by an increment of   in the power law with exponential cutoff model (Weerman et al. 2012). 

The most important parameter influencing the value of the critical point is the migration from the 

metacommunity  . It was previously observed that immigration is crucial for maintaining diversity in 

spatial competition models (Loreau and Mouquet 1999) and neutral models (Hubbell 2001). If there is no 

immigration (    eventually only one species will dominate the local community (Hubbell 2001), a 

consequence of the finite size of the local community (Solé et al. 2004); we observed this effect for low 

values of   and smaller sizes of the lattice. Thus it is clear that a higher   will produce a community 

more resistant to competitive replacement. In our model,   represents the probability of a long-distance 

dispersal event that happens at random in the simulation area. Thus, high values of   will break the local 

patch structure, and can disrupt the spanning patch, producing an increase in the critical point. 

In our simulations, the competition intensity   can play the same role as stress: a very small degree of 

competition produces a critical transition from a neutral phase to a niche phase, and the most competitive 

species invades a great portion of the landscape. The sequence of an increasing   when the critical point 

is approached is not observed in our model, but rather a decrease, when the system goes towards the 

critical point, and then an increase. This coincides with theoretical predictions from percolation theory 

(Stauffer and Aharony 1994): at the critical point, the exponential decay in the patch distribution 

vanishes, and the patch distribution becomes closer to a pure power law. 

We observed a decrease of   but also a decrease of the power law exponent   when the system is 

approaching the critical point   , and both reach a minimum after it. Thus the pattern that can be used to 

detect if we are approaching the critical point and the biodiversity collapse is the decrease in   and  , but 

as there is a wide variability in both parameters, it is possible that we will not observe this decrease in 

some systems that are nonetheless heading to the critical point. 

A commonly used pattern to characterize ecological communities is the species abundance distribution, 

which we used in the form of rank abundance distributions (RAD). It was demonstrated that neutral and 

niche mechanisms could produce the same RAD (Volkov et al. 2005, Chisholm and Pacala 2010), so it 

might not be useful for determining the proximity to the critical point. We found that there is a change in 

the RAD when the critical point is approached but these changes are small and will probably go 

undetected (Saravia 2015). The shape of the RAD is highly dependent on the metacommunity, which is 

difficult to estimate as a baseline, and thus there is no RAD characteristic of a community near the critical 

point. Richness and Shannon diversity may have a small increment, or start to decrease, when the 

community goes through the critical transition; both depend on the metacommunity and on the existence 

of trade-off. Thus these two indices can be misleading indicators of the proximity of a critical transition. 
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The existence of the two phases or states of the system can be characterized by the size of the largest 

patch in proportion to the size of the area of the system     , and with the size of the largest patch in 

proportion to the total species' area      . If we are analyzing regions with non-habitable areas that 

cannot be easily detected but are included in the total area, the $ S_max         could be relatively low 

and give a false impression that the system is in a neutral phase. Thus RS_max      is a more robust 

indicator of the phase state. 

The analysis of the fluctuations in the largest patch is a relatively new early warning indicator that was 

proposed for a patch model representing desertification (Kéfi et al. 2007), and it has not yet been applied 

to existing observational data on desertification processes. We present here the first analysis of 

fluctuations of      and       for a multi-species model. These indicators combine both spatial and 

temporal information and were the most robust early warning indicator from the set we analyzed. 

Moreover, these indicators were easier to estimate than parameters of patch size models. As they are 

based only on geometrical properties of patches (percolation) that happen in a wide array of models (Solé 

et al. 2004, Oborny et al. 2007, Gastner et al. 2009, Bonachela et al. 2012, Abades et al. 2014), they have 

the potential to be used as generic indicators that can be applied to most spatial ecological systems. 

Analyzing the largest patch (either with only one snapshot of the spatial distribution, i.e. the proportions 

(     /      ), or the fluctuations) is a promising avenue to obtain warnings of sudden changes in 

ecosystems. 

                   

We calculated all the early warnings for the species patch distribution of the Barro Colorado Island at 

Panama (BCI). First using the relative size of the largest patch,      or      , we identified that the BCI 

is most probably in a neutral phase, as suggested by other studies (Jabot and Chave 2011, Seri et al. 

2012). The variance of the fluctuations is also very small which indicates us that BCI is not near a critical 

transition of this kind. The Skewness of       and the decrease of the power law exponent   and the 

decay parameter   of the patch size distribution are also compatible with a system far from the transition 

thus we concluded that the forest seems not to be close ---until now---to a critical point. 

Percolation transitions are second order or continuous critical transitions. This means that unless the 

system becomes degraded and changes its internal dynamics, these transitions are reversible. Much of the 

ecological literature is dedicated to studying first order or discontinuous transitions that produce 

hysteresis---also called regime shifts---that rely on the understanding of deterministic equations (Solé and 

Bascompte 2006). These kinds of transitions are practically irreversible, but in real ecosystems the 

presence of noise and spatial heterogeneities can convert irreversible transitions into second order 

transitions (Martín et al. 2015), enhancing the importance of second order phase transitions such as the 

ones shown here. 

Using a spatially implicit model Fisher & Metha (2014) described a phase transition between neutral and 

niche communities. They used a stochastic Lokta-Volterra model for niche communities where neutral 

dynamics was added as Gaussian noise. Their mechanism is similar to ours but not restricted to 

hierarchical competition. This suggests that our results can be extended to a broad kind of competitive 

interactions that are present in real ecosystems (Soliveres et al. 2015). A generalized stochastic interaction A
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model can be defined in which species could have different colonization, mortality and interactions (Sole 

et al. 2002), a model in which transitive or intransitive competition, and even predation, could be 

included. The average of interaction coefficients is analogous to the intensity of competition   used here, 

and we expect that if vary the average interaction from low to high we will observe the same kind of 

phase transition described here. The Fisher & Metha model predicts that under stress a community will 

suffer a biodiversity collapse produced by a shift towards neutrality. This means that disturbed, less-

diverse communities should have neutral dynamics. This prediction is contrary to most of the models and 

experimental data that suggest that niche dynamics dominate low-diversity communities while neutral 

dynamics will be more common in high diversity communities (Chisholm and Pacala 2011). Our results 

are in agreement with with this last prediction: when the system shift from the neutral phase to the niche 

phase the reduction in richness and diversity is produced. 

Our results imply that most ecosystems will exhibit patterns of diversity that are either strongly niche-

structured or indistinguishable from neutral (Chisholm and Pacala 2011, Fisher and Mehta 2014). Several 

field studies have demonstrated that weak interactions are a general phenomenon for species-rich 

communities (Volkov et al. 2009, Martorell and Freckleton 2014) and are also observed for natural food 

webs (Wootton and Emmerson 2005), so it is possible that these communities live near the critical point 

between neutrality and niche. This suggests the existence of a mechanism similar to critical self-

organization as hypothesized by Solé et al. (2002) called self-organized instability. In this general 

mechanism, the immigration of new species increases diversity and connectivity. We argue that it also 

increases average interaction strength---because if there is an increase in connectivity there has to be 

some interaction. This will happen only until the critical point is reached, and then diversity diminishes; 

thus only communities with weak interactions can maintain high diversity in the long term. This agrees 

with some new theoretical developments that state that the number of interactions (connectivity) and 

average interaction strength determine the conditions for coexistence (Grilli et al. 2017). The mechanisms 

included in this model are generic, with the only differences between species being their competitive 

ability and frequency in the metacommunity. The habitat is homogeneous so niche partition mechanisms 

are not included but the final effect could be the same at the end: the lowering of the intensity of 

interactions. 

Habitat fragmentation produces more isolated communities (Haddad et al. 2015), where less space is 

available to species; this is equivalent to a community composed of fewer sites. Then it is probable that 

fragmentation shifts the critical point to lower values, making the communities more sensitive to 

environmental changes. At the same time, these communities would have a stronger niche effect and a 

high probability of biodiversity collapse. This effect has been observed in tropical communities affected 

by fragmentation, with local extinctions mediated by niche-based competitive interactions (Bregman et al. 

2015). As we have previously mentioned, the distribution of habitable and non-habitable sites produced 

by fragmentation could result in percolation and critical phenomena that are different from those 

described here (Saravia et al. 2016). The interplay between these two critical transitions can be more 

complex than previously thought (Oborny et al. 2007), and thus the combination of these two critical 

phenomena should be thoroughly studied. A fundamental next step is to extend this work to different 

kinds of interactions, including food webs, mutualistic communities and intransitive competition 

(Soliveres et al. 2015). A
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The novelty of this critical transition is that it occurs before transitions produced by habitat loss, 

deforestation, land use changes, increased grazing, or fragmentation, and only needs a change in the 

environmental conditions that alters the strength of the interaction between species. This also could be 

produced if species that previously did not interact have the possibility to compete, e.g. an invading 

species could trigger a phase transition in a formerly neutral community. A significant portion of the 

biosphere's ecosystems are under pressures generated by human activities, but human activities also 

produce global-scale forcings ---like climate change---that can reach relatively pristine ecosystems 

(Barnosky et al. 2012). These kinds of changes can be represented by the phase transition described here, 

and the methods that we have presented could be applied to detect them even before the ecosystem is 

directly degraded. 
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Figure Legends 

Figure 1. Probability of Spanning cluster for a spatial neutral/niche model as a function of the intensity of 

competition  . When the competition intensity   is near zero the community is at the neutral phase, the 

vertical line is the critical point and after it the community is in the niche phase. The columns represent 

two different metacommunity types: Logseries, a metacommunity with logseries species abundance 

distribution (SAD); Uniform, a metacommunity with a uniform SAD. The columns represent the side of 

the simulation lattice, the total size is       . The critical point was determined as the point where the 

spanning probability is 0.5, the other parameters used were  =0.0001, dispersal distance = 26.66 
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Figure 2. Shannon diversity index and species richness for a spatial neutral/niche model as a function of 

the intensity of competition  . When the competition intensity   is near zero the community is at the 

neutral phase, the vertical line is the critical point and after it the community is in the niche phase. 

Columns represent metacommunity types: Logseries is a metacommunity with logseries species 

abundance distribution (SAD), and the Uniform metacommunity have a uniform SAD, both with 320 

species. Rows represent different Shannon Diversity and richness. Points are independent simulations of 

the model. The  leftmost value of     has been shifted to allow its representation in logarithmic axes. 

Other parameters used were side of the simulation lattice 256 sites,  =0.0001, dispersal distance = 26.66. 
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Figure 3 Spatial pattern for species before and after the critical points. The intensity of competition   

determines if the community is in a neutral or niche phase, for     &          the communities are 

neutral and for greater   they surpassed the critical point and a spanning patch appears. The letter S in the 

labels represent the number of species, and the colors specified in the legend are the different species. The 

parameters used here were: side of the simulation lattice 256 sites, migration  =0.0001, dispersal 

distance = 26.66, and a uniform metacommunity with 64 species. 
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Figure 4. Early warnings indicators for the critical transition between neutral and niche communities. A) 

The variance of temporal fluctuations of the largest patch relative to the total area      . B) Skewness of 

the temporal fluctuations of the largest patch relative to the total area      . We simulated communities 

in the same time span than the simulations to determine the critical point---typically around 20000 time 

steps---we take the last 5000 and measure the patch sizes each 100 time steps. The communities that did 

not have a spanning patch were classified as "Before" the critical point, with a range of           . 

The communities that present a spanning patch in all the times are measured as "After" the critical point, 

with           . The communities where the spanning patch appears and disappears were classified as 

"Near" the critical point, with                . We made 10 simulations for each   and two 

metacommunity types: "Logseries" species abundance distribution (SAD) and "Uniform" SAD. 

Metacommunities have 320 species, the size of the grid was 256*256 sites, migration from 

metacommunity was 0.0001, dispersal distance=26.66. 
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Table Legend 

Table 1. Parameters values used in the simulations of the neutral-hierarchical model. Side is the size of 

the side of the simulation grid. The parameter   is the mortality rate;   is the exponent of the inverse 

power law dispersal kernel, between brackets is the mean dispersal distance; and   is the migration from 

the metacommunity. The units of the simulation grid and dispersal are in meters to make them 

comparable with field values. 

Side 

Metacomm. No. 

Species     (mean dist.)   

128 320 0.2 2.04 (26.6) 0.0001 

192 64  2.08 (13.3) 0.001 

256 16  2.02 (53.3) 0.01 
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