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Periphyton is an aquatic community composed by algae, bacteria, fungi, and other microorganisms that can develop  
a complex architecture comparable to tropical forests. We analyzed the spatial pattern of a periphyton community along  
a succession developed in experimental tanks. Our aim was to identify regularities that may help us to explain the patchiness 
of this community. Therefore, we estimated the spatial pattern of periphyton biomass using a non-destructive image 
analysis technique to obtain a temporal series of the spatial distribution. These were analyzed using multifractal techniques. 
Multifractals are analogous to fractals but they look at the geometry of quantities instead of the geometry of pattern.  
To use these techniques the object of study must show scale invariance and then can be characterized by a spectra of  
fractal dimensions. Self-organization describes the evolution of complex structures that emerge spontaneously driven 
internally by variations of the system itself. The spatial distribution of biomass showed scale invariance at all stages of 
succession and as the periphyton developed in a homogeneous landscape, in a demonstration of self-organized behavior. 
Self-organization to a critical state (SOC) is presented in the complex systems literature as a general explanation for scale 
invariance in nature. SOC requires a mechanism where the history of past events in a place influence the actual dynamics, 
this was termed ecological memory. The scale invariance was found from the very beginning of the succession thus self-
organized criticality is a very improbable explanation for the pattern because there would be not enough time for the 
build-up of ecological memory. Positive interactions between algae and bacteria, and the existence of different spatial scales 
of colonization and growth are the likely causes of this pattern. Our work is a demonstration of how large scale patterns 
emerge from local biotic interactions.

Patchiness seems to be the rule in nature and can be observed 
at different organizational stages from cells to ecosystems 
(Holling 1992, Wiens 1999). Ecological studies and envi-
ronmental monitoring programs should be designed and 
analyzed taking into account this fact (Wagner and Fortin 
2005). Most ecological processes are inherently spatial as 
they operate between neighboring units (Levin 1992), this 
could be seen in competitive interactions (Stoll and Prati 
2001), tree dispersal (Seidler and Plotkin 2006) and produc-
tivity (Pringle et al. 2010) to cite a few of them. Processes 
also interact with environmental conditions varying in space 
and time and with other processes, resulting in complex 
interwoven patterns at multiple spatial and temporal scales. 
Different theoretical and field studies have emphasized the 
importance of local biotic interactions in producing such 
complexities, like predator–prey (De Roos et al. 1998), com-
petition between termite mounds (Pringle et al. 2010), facil-
itation between plants (Rietkerk et al. 2004) and others. The 
existence of these interactions can produce complex spatial 
patterns even in homogeneous environments (Rietkerk and 
van de Koppel 2008). In cases where these patterns are pro-
duced from fine-scale interactions owing to internal causes, 
they are called self organizing (Rohani et al. 1997).

Self-organization is defined as a set of dynamical mecha-
nisms whereby structures appear at the global level of a  
system from interactions among their lower-level compo-
nents. The interactions between the constituent units are 
determined by local information, without reference to the 
global pattern, which is an emergent property (Solé and  
Bascompte 2006).

The characteristics of a self-organizing process are:  
a) the creation of space-time structures from an homoge-
neous medium; b) the possible existence of multiple stable 
states, because the structures emerge through the amplifica-
tion of random fluctuations; c) the existence of thresholds 
where a tiny change in a parameter can lead to a qualitative 
change in the behavior of the system, these are called bifur-
cations. In this context, the details of the particular biologi-
cal interactions could be irrelevant for the dynamics of the 
system, thus a very simple model can describe it successfully 
(Solé and Goodwin 2000).

Some of these structures display scale invariance and 
therefore can be characterized by using fractal (power-law) 
spatial distributions, commonly associated with criticality 
(Solé et al. 1999). In its classical form criticality comprises 
an abrupt shift in state following only slight changes in an 
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external parameter, and is related to threshold behavior in 
ecological systems (Scheffer and Carpenter 2003).

Spatial patterns which develop from local interactions 
following a power law show a complete lack of characteristic 
or dominant spatial scale. Ecological systems for which such 
behavior is suspected include the size distributions of gaps  
in tropical forests (Solé and Manrubia 1995), clusters  
in intertidal mussel beds (Guichard et al. 2003), wind dis-
turbed (Kizaki and Katori 1999) and fire disturbed forests 
(Malamud et al. 1998), vegetation cover in the Kalahari 
(Scanlon et al. 2007) and biomass in intertidal microphy-
tobenthos (Seuront and Spilmont 2002). However, the exis-
tence of this kind of power law spatial pattern is not enough 
to identify a critical behavior because the correspondence 
between patterns and underlying biological processes is not 
unique (Solow 2005).

There are three classes of critical behavior in the field  
of ecology which correspond to different kinds of driving 
mechanisms (reviewed by Pascual and Guichard 2005):  
1) classical criticality: here we can observe that under the 
influence of a parameter external to the system (i.e. an envi-
ronmental condition such as wind force) having a minimal 
change, the system undergoes a sudden shift called phase 
transition which happens at a critical point. Near this point 
power law patterns emerge (Scheffer 2009). It follows that 
criticality in this case implies a high sensitivity to environ-
mental changes, as observed in predator–prey intertidal 
systems (Robles and Desharnais 2002). 2) Self organized 
criticality: in these cases there is no sudden shift associated 
with an external parameter and a critical point is not defined 
for them. The system takes itself to the critical state through 
its own dynamics and a slow external force (Rhodes et al. 
1997). In these systems large and intermittent temporal 
fluctuations are produced due to its internal dynamics.  
3) Robust criticality: here power law scalings occur in a 
broad region of parameter space, even though there exists a 
critical point where the connectedness of the patches changes 
dramatically. In addition, there are no drastic changes in 
the abundance of species neither from large temporal fluc-
tuations (as in 2), nor from high sensitivity to an external 
parameter or environmental conditions (as in 1).

Thus scale invariance is one of the regularities that can 
help us to understand the nature of ecosystems (Pueyo et al. 
2010), it is closely connected with criticality and therefore 
both these issues have relevance for ecological theory and its 
applications.

Scale invariance or fractal spatial distributions have been 
observed at different successional stages (Alados et al. 2003, 
2004) and it is common to estimate one fractal dimension. 
However, it is likely that the spatial distributions present 
spatial correlations (Wagner and Fortin 2005) which were 
produced by several processes operating at different scales. 
In these cases a single fractal dimension is not enough to 
completely characterize their fractal properties (Stanley and 
Meakin 1988, Ricotta 2000), a set of fractal dimensions is 
required. This is called multifractal spectrum.

We hypothesize that the periphyton successional assem-
bly is a spatial self-organized phenomenon where several 
processes are likely to operate at different spatial scales. 
Therefore we expect to find spatial correlations and we used 
multifractals to analyze the succession. Additionally, there 

are geometrical reasons (explained in methods) to use mul-
tifractal analysis.

We monitor the development of a periphyton commu-
nity in the laboratory and estimate the spatial distribution 
of biomass over 11 weeks. We analyze it using multifractal 
methods to test for the presence of spatial self-organization. 
We discuss the processes that might cause it and the possible 
robust critical behavior. This opens the possibility to further 
study the behavior of an ecological system which seems to 
show robust criticality and spatial power-laws. The under-
standing of the mechanisms by which power laws arise from 
spatially organized ecosystems has potential applications for 
their management and conservation (Kéfi et al. 2011). These 
applications could be applied without regarding one particu-
lar ecological system while the condition of robust criticality 
is maintained. 

Methods

Study system

We call periphyton a complex community composed of 
several organisms including algae, bacteria, fungi, animals, 
inorganic and organic detritus, which grows attached to sub-
merged surfaces (Wetzel 1983). Periphyton can be respon-
sible for most primary production in the shallow waters of 
streams, lakes, coastal waters and wetlands (Vadeboncoeur  
et al. 2001). It is also a chemical modulator in aquatic  
systems, transforming many inorganic chemicals into nutri-
ents for its organic forms (Stevenson 1996), something that 
makes possible its use to purify polluted waters (Vymazal 
1988). Furthermore, periphyton has been used as an indi-
cator of water quality due to its property of integrating the 
effects of different effluents and its rapid response to envi-
ronmental changes (Lowe 1996).

One of the descriptive characteristics of periphyton com-
munities is biomass, defined as the amount of organic matter 
(or carbon) that has accrued from the production per surface 
unit. Biomass is a measure that integrates the interactions of 
individual characteristics of species, abiotic environmental 
controls and the effects of herbivory (Biggs et al. 1998).

In turn, the spatial distribution of biomass is the result 
of processes of colonization, growth, competition, and  
grazing, among others. Colonization occurs in random 
places that act as seeds for the development of biomass.  
As growth progresses, periphyton communities develop com-
plex architectures similar to those of tropical forests, where 
competition for light and nutrients plays an important role 
(Lowe 1996).

We monitored the development of a periphyton com-
munity in the laboratory using ten 15 liters tanks, which 
were each illuminated by 10 fluorescent lamps with a photo-
period of 12/12 hours, and an average photon-flux density  
of 40 mmol s21 m2. In each tank we placed 12 plates of  
high impact white polystyrene, 1 mm thick, with a size of 
8  8 cm attached to ceramic tiles of the same size to keep 
them anchored to the bottom. Tanks were filled with 5 l of 
water from the Puelchense subaquifer. We used ground-
water since the chemical characteristics of surface water are 
highly variable, and groundwater has proven to have more 
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stable properties over time (Momo et al. 1999). Then we 
added 50 cm3 of water with a high density of algae obtained  
by scraping from submersed macrophytes (Egeria densa), 
filtered with a mesh of 200 microns. Macrophytes were col-
lected in the Las Flores stream, part of the Luján River basin 
(Feijoó et al. 1999).

To estimate the spatial distribution of biomass we used a 
nondestructive photographic method to obtain the develop-
ment in time of the periphyton community (Saravia et al. 
1999). The method uses digital photography to estimate bio-
mass using a mathematical relationship previously calibrated 
with standard methods for chlorophyll a determination.

We identified one plate per tank for the photographic 
determination, on which measurements were made through-
out the experiment. The frequency of sampling was weekly 
and lasted 11 weeks, from September to November 1999 
(Fig. 1). On the same day that we made the photographic 
estimate another plate was selected at random and extracted 
from all the tanks. The plate was divided into three sections: 
one for chlorophyll a determination using the modified 
Lorenzen method (Aminot 1983) with methanol extraction, 
other to determine ash-free dry weight, and the third section 
was fixed to determine the taxonomic composition. We  
also measured physical characteristics such as water temper-
ature (circa 22°C), the photon flux density (circa 40 mol 
quanta m22 s21), which did not vary significantly through-
out the experiment.

Each week we added 50 cm3 of concentrated algae to 
simulate the algae colonization that the community would 
receive in a natural environment. Groundwater was also 
added to compensate for evaporation when necessary.

Multifractal analysis

Multifractals and fractals are techniques to characterize  
scaling behavior of a system, the difference is that fractals 
look at the geometry of presence/absence patterns, while 
multifractals look at the arrangement of quantities like  
population densities or biomass (Halley et al. 2004). An 
option to analyze this system would be to discretize it using 
a threshold and then calculate the fractal dimension for 
each slice. Some studies analyze a range of thresholds and 
obtain different values of the fractal dimension for each one 
(Seuront and Spilmont 2002, Kellner and Asner 2009). The 
natural choice is to use multifractal analysis and then there is 
no need to discretize the object at arbitrary thresholds.

Multifractals have been applied by other researchers for 
the characterization of bacterial biofilms (Hermanowicz et al. 
1995) – which form an essential part of periphyton commu-
nities – and to characterize microphytobenthos communities 
(Seuront and Spilmont 2002). In ecology, multifractals have 
been used in the analysis of temporal variability in plank-
ton biomass (Pascual et al. 1995) as a model of extinction 
and origin of species (Plotnick and Sepkoski Jr. 2001), and 
to analyze the spatial distribution of gaps caused by falling 
trees in the rainforest (Solé and Manrubia 1995). In the lat-
ter case the existence of multifractal distribution was taken 
as evidence that the forest could be in a critical state (Solé 
and Alonso 1998).

The fractal dimension D is usually used to characterize 
a fractal object, which measures the object’s capacity to fill 
the space. Instead multifractal objects are characterized by a 
spectrum of fractal dimensions. We analyzed the images of 
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Figure 1. Time development of periphyton’s spatial biomass distribution for one plate. The numbers on the top of each image correspond 
to weeks of development. Darker areas correspond to higher biomass, brighter areas to low biomass. The gray levels of the first week were 
modified to enhance the visualization of the pattern.
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The symbol ≈ is used here to mean that the term on the 
left approaches a constant times the term on the right at 
the limit of small e. If we raise Eq. 4 to the power of 10 to 
remove the log:

Zq
Dq≈ ε

( )q1
 

(5)

Expression 5 is called a power law, and determines how Zq 
varies with scale represented by e. The relations of expression 
5 are the signature of multifractal and fractal objects, in fact, 
when q  0, (Eq. 5) becomes the standard fractal dimension. 
For a fractal object the calculation of Dq in a range of q can be  
performed but it would result in a constant value equal to D0.

The exponential relationship (Eq. 5) only holds for  
all scales in theoretical multifractals. In nature though there 
are upper and lower limits for scales in which this relationship 
applies (Davis et al. 1994). The first limitation is imposed 
by the extent and resolution of the experimental method. 
In addition there are restrictions imposed by the method of 
estimation. At scales of less than 4 or 5 resolution elements 
(pixels), image structure is severely compromised (Chappell 
and Scalo 2001), this sets the lower limit. The upper limit of 
the scale used in the estimation should be significantly less 
than the size of the image otherwise edge effects distort the 
results (Chappell and Scalo 2001).

The second limitation is that natural processes have  
multifractal properties in a bounded range of scales due 
to their own dynamics. This is determined by observing 
the scales at which they maintain the linear relationship 
of log(Zq) versus log(e) (Pascual et al. 1995). This range  
of scales should be retained for all q where Dq is defined.

A caveat of generalized dimensions is that they do not  
have a clear interpretation in geometrical terms, except  
for three special cases: D0 is the standard fractal dimen-
sion, D1 is the information dimension that describes how 
the information content changes with scale, and is related to 
the Shannon index of diversity. Finally D2 is the correlation 
dimension that measures how density accumulates as the 
area changes, D2 is related to the Simpson diversity index.  
In fact Dq might be considered as a measure of the the speed 
of increasing of Hill’s generalized diversity index (Hill 1973) 
as the area changes (Ricotta 2000).

Spectrum of singularities
This method can be used to overcome the problems of  
interpretation of generalized dimensions. A multifractal 
can be thought of as the sum of subsets with different frac-
tal dimensions and this method characterize the different  
subsets and its associated fractal dimensions.

We start defining the coarse Hölder exponent: given a 
point x on the plane where the object is defined, we place a 
square with side e centered on x and calculate the value of 
the biomass contained therein m(e, x). Then for any point x, 
the exponent is defined as:

α
µ ε

ε


log
log

,x( )( )
( )

In the limit where the size of the square tends to zero, a mea-
sures how biomass integrated around a point x varies with 
distance according to the relationship:

periphyton using the spectrum of generalized dimensions Dq 
and the singularity spectrum f(a).

Generalized dimensions spectrum
Generalized dimensions are exponents that establish the 
non-uniformity of a measure and were originally developed 
to characterize chaotic systems (Hentschel and Procaccia 
1983). To estimate them we used the method of moments 
based on box-counting (Halsey et al. 1986). The image is 
covered with a grid, which divided it into N(e) squares of 
side e, allowing to calculate the biomass mi(e) in each of 
them. Then the so called partition function is computed as:

Zq
qN

ε µ ε
ε

( ) ( )( )∑
( )

 i
i  

(1)

Where q is called moment order. The operation is performed 
for different values of e and q, within a predetermined range. 
The generalized dimension is calculated as:

Dq 


1
1

log

log q

Zqlim
ε→

ε

ε0

( )( )
 

(2)

though in fact the limit can not be assessed. Then the second 
term in Dq is calculated as the slope of the log(Zq) versus 
log(e). This is done for different q, provided that it is a real 
number. Using a range of q that includes negative and posi-
tive numbers yields a graph of Dq in terms of q, called the 
spectrum of generalized dimensions. The parameter q deter-
mines which squares have a greater contribution to the sum 
of Eq. 1 and therefore more influence on Eq. 2. When q 
is a relatively large positive number, the main contribution 
comes from higher mi. However, when q is a negative num-
ber, large in absolute value, the highest contribution comes 
from smaller mi. Thus an image with large peaks surrounded 
by a relatively uniform values of biomass will have higher Dq  
for positive q and an image with sharp holes of biomass will 
have higher Dq  for negative q. An image with both will have 
the biggest range of Dq.

The spectrum of generalized dimensions, Dq takes the 
shape of a sigmoidal curve and it is a decreasing function of 
q (Grassberger 1983).

When q  1, the denominator of the first term in Dq  
is undefined, so it must be replaced by the following  
expression:

Dq  lim
ε→

ε
µ ε µ ε

ε0

i i
i

N

( ) ( )( )∑
( )

log

log  
(3)

and we proceed to calculate the slope of the numerator in 
terms of log(e).

The assumption that must be met in all cases is that the 
relationship log(Zq) versus log(e) should be linear. These 
linear relationships are estimated using the least squares 
method. Different e which are used to calculate the sums in 
Eq. 1 and 3 are determined so as to be equidistant points on 
the axis of the independent variable log(e).

The generalized dimension is an exponent because it is 
derived from the definition 2, yielding:

log 1 log( ) ( ) ( )Z D qq q≈ ε
 (4)
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values of D1 falls outside the interval, then the spatial pattern 
is not random.

Results

We observed that the linear relation necessary for the  
biomass distribution to be multifractal was achieved for all 
dates sampled and all q used to determine the spectrum  
of generalized dimensions (Supplementary material Appen-
dix 1 Fig. A1). We also noticed that the linear relation was 
maintained throughout the range of scales considered. The 
data used to determine Zq at each scale was not indepen-
dent because the squares used for smaller e values are nested 
in the greater ones. This violates the assumptions implicit 
when performing statistical tests but does not invalidate the 
least square method to determine the best line through all 
points. We calculated the coefficient of determination R2 as 
a descriptive measure of goodness of fit (Borda-de-Água et al. 
2002). All R2 were higher than 0.99 in all cases, indicating 
a very good fit.

There was a wide variation in the spectrum of generalized 
dimensions for different times of development of the per-
iphyton community (Fig. 2). The theoretical prediction that 
Dq should be a monotonically decreasing function of q was 
maintained in all cases, that is, that for all q1  q2 the gener-
alized dimension must be D1   D2 (Grassberger 1983).

In the case of a monofractal – when biomass exhibits  
a simple fractal structure – the spectrum of generalized  
dimensions should be a constant line, a pattern not observed  
in any case (Fig. 2).

A uniform spatial distribution of biomass, that is a con-
stant value of biomass over all the plate would give a Dq 
equal to two. Thus the more different the value is from two 
the more different from a uniform surface the colonized 
plate is.

µ ε ≈ εα( , )x

this means that increasing the scale in e the biomass increases 
or decreases according to a. The smaller the value of a  
the faster this increase will be at the smallest scales of e.  
Thus if the region around the point x has a relatively uni-
form density, the value of a will be relatively high. If point x 
have very high value with respect to the contiguous zone of 
the image, a singular value, the exponent a will be smaller 
(Pascual et al. 1995).

If we count the number of squares N(a) where the biomass 
m(e, x) has an exponent ranging between a and a  da, with 
da being a small value with respect to a, then we define:

f
N

ε
εα

α
ε

( )
( ( ))

( )


log
log

When e tends to 0, fe(a) has a well-defined value f(a) that 
can be interpreted as the fractal dimension of the set of boxes 
with a singularity exponent a:

N f( ) ( )α ≈ ε α

In other words, within the biomass distribution there are 
overlapping sets each marked with a singularity exponent a 
and a fractal dimension f (a). The method of estimation is 
given in supplementary material (Supplementary material 
Appendix 2).

Both spectra are related and they provide the same infor-
mation but from a different point of view. The singular-
ity spectrum provides a naturally intuitive description of a  
multifractal object in terms of interwoven sets and the gen-
eralized dimensions correspond to the scaling exponents for 
the qth moments of the object (Chhabra and Jensen 1989).

Estimation

Since the methods to estimate the two spectra use the same 
grids both were calculated at the same time. The images of 
biomass obtained from the succession of the periphyton 
community had a resolution of 470  470 elements or pix-
els, so we chose a grid size range of e in powers of two with 
a minimum of 22  4 and maximum of 27  128 pixels. 
Because different sizes of e do not divide the image exactly, 
the total area covered by the squares is not the same for each 
e – something which leads to deviations in the estimate. 
To avoid that we used a sliding window, taking a smaller  
portion of the image that it was exactly divisible by all  
values of e, 28  256 pixels. This window was located at the 
four corners of the image and the values of the spectra for 
each window were averaged. Using a q range from 224 to 
24, one plate was followed through time for each of the tanks 
and ten images were obtained, so we examined the develop-
ment of 10 independent series of colonizations.

To test if the colonization patterns were different to a 
random one, we performed a randomization test. We use 
D1 because this is theoretically the most informative dimen-
sion in the spectrum, and also is one of the least affected by 
sampling problems (Marshak et al. 1997). We shuffle the 
pixel position and recalculate the information dimension 
D1 and obtained a confidence interval for a random pattern 
performing 1000 repetitions (Crowley 1992). If the actual 

Figure 2. Spectrum of generalized dimensions Dq versus q for  
different times of development of the periphyton community.  
The values shown are the means for each colonization time.
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this can be seen in the last images of Fig. 1. That does not 
mean that the specific composition or other parameters of 
succession stabilize too, this could be the subject of future 
studies.

Another way to see the degree of heterogeneity of  
the spatial biomass distribution is to calculate the range of 
Dq for a given value of q (DDq). We can compare it with 
the information dimension D1 and they roughly follow  
the same pattern: a peak of heterogeneity at five weeks and 
low heterogeneity at the beginning and at the end of succes-
sion (Table 1). The values of DD20 in Table 1 have roughly  
a coefficient of variation of 10% and the ones of D1 are 
around 1%, this corresponds to the fact that Dq for large q 
(negative or positive) are determined by low or high intensity 
patterns that are relatively rare, so for statistical purposes it 
should be more convenient to use low values of q (in the 
range of 5 to 25).

For all times in all plates the spatial distribution of bio-
mass is not random, the region corresponding to a random 
spatial distribution is very narrow (Fig. 4), this means that 
D1 is very sensitive index of spatial pattern. Besides initial 
colonization could be random the growth of periphyton 
quickly modifies the spatial pattern.

With regard to the spectrum of singularities, good fits 
were observed in the determination of a for all q at all dates 
sampled (Supplementary material Appendix 1 Fig. A2). The 
R2 value was higher than 0.99 in all cases.

In the first week of development Dq showed the smallest 
distance from two for negative q and the largest distance for 
q positive, this means a uniform pattern of low biomass  
with some abrupt peaks of relatively high biomass (Fig. 2, 3).  
In the following weeks the regions of low biomass tend  
to grow but small regions of low biomass remain, creating 
holes. These singularities grow until the third week when  
the values of Dq for q negative show the maximal distance 
from two. Then the holes begin to fill, so Dq values get closer 
to two.

For q positive, the peaks of high biomass become less 
pronounced until the third week; then there is a secondary 
growth, new peaks of high biomass are formed, this might be 
caused by a replacement of species. The fifth week shows the 
maximal for these singularities. Then Dq for q positive tends 
to get closer to two and the biomass distribution as a whole 
tends to be more uniform.

The development of the periphyton biomass is what gen-
erates the multifractal pattern so the range of Dq variation 
should increase or at least be modified with time. This is 
what has been observed experimentally with a maximum 
peak at fiveweeks of development, this is the point of greater 
heterogeneity of the biomass distribution from which the 
variation of Dq decreases (Fig. 3).

All values of Dq seems to stabilize in the last two weeks. 
From the point of view of spatial biomass distribution the 
succession appears to reach a steady state by the week ten, 

Figure 3. Plot of the generalized dimensions Dq versus time for different values of q. The values of Dq are averages of ten plates for each 
colonization time.
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a  2. We can calculate the range of a for a given value of q 
(Daq). The wider range was observed at about five weeks of 
development (Table 1). As expected both methods show the 
same patterns, indicating a greater heterogeneity about five 
weeks and a clear difference for the first week with respect 
to the others.

As a dimension, f (a) does not accept negative values, 
but they tend to appear in certain stochastic multifractals 
describing very rare events. This means that as e tends to 
zero we find a decreasing amount of the corresponding a 
(Chhabra and Sreenivasan 1991). They can also be caused by 
the effect of the finite size of the sample and the estimation 
errors. In our case we observed the presence of negative values 
for q where the fits are poorer. These were observed in the first 
week for the positive values of q, corresponding to the left  
of the curve, and on the following weeks for negative values 
of q, to the right of the curve. This suggests that the negative 
values of f (a) come from sampling errors and the effects of 
finite size of the sample rather than from very rare events.

Discussion

We study the spatial distribution of periphyton’s biomass and 
the results indicate that is multifractal, meaning that it could 
be seen as a composite of several fractal sets with various frac-
tal dimensions. These different sets can be interpreted as dif-
ferent views about how the community is organized in space 
and the nature of the correlations between individuals (Solé 
and Bascompte 2006). This observation can be used when 
building a model to explain the mechanism of the commu-
nity assembly to restrict the type of models that reproduce 
the field observations.

Moreover multifractality implies that the spatial distribu-
tion is self-similar with respect to the scale of observation. This 
means that if we look at the image with different lenses that  
can magnify or reduce the image, we would observe a similar 
distribution of biomass within a certain range. In the range 
used in this experiment from 0.7 to 22 mm there is no pre-
ferred scale, which does not imply that the distribution of  
biomass is homogeneous and constant, but that its irregu-
larity or heterogeneity is invariant. The same set of processes 
should be acting over these scales generating this characteristic 
distribution.

The communities were developed in homogeneous envi-
ronments, so in principle the spatial pattern has to be caused 
by biological processes generated by the community itself, 
that is the community shows self-organization.

For f (a) we observed the expected deviations from lin-
ear behavior for large q in absolute value (Supplementary 
material Appendix 2), resulting from the arbitrary choice of 
e sizes. For q in the range of 24 to 6, R2 was always higher 
than 0.95. Outside this range, the poorer fits were observed, 
in the first week for positive q and from the second week 
onwards for negative q (Supplementary material Appendix 1 
Fig. A3).

In a plate without algae or a plate with a uniform distribu-
tion of biomass the spectrum will collapse to a point where 
a  f (a)  2. Theoretically, this value also corresponds to a 
completely random distribution of biomass. The difference 
is that in a empty plate a and f (a) would not have varia-
tions and on a plate with random biomass we would observe 
a narrow curve extending downwards (Chappell and Scalo 
2001). We found instead, for all cases analyzed, singularity 
spectra with broad ranges of a and f (a) which demonstrate 
the multifractal nature of the distribution of periphyton bio-
mass (Fig. 5).

Development stages of the community differ much more 
in the area of a  2, i.e. for q negative. A greater range in the 
exponent of singularity a indicates a greater heterogeneity of 
the image, since there are homogeneous areas characterized 
by a  2 and areas with large fluctuations characterized by 

Table 1. Time evolution of variables extracted from the generalized dimension and singularities spectrum. DD20 is the range of generalized 
dimensions Dq at q  20 calculated as D220 – D20. D1 is the information dimension. Da20 is the range of the exponent of singularity calculated 
at q  20 as a220 – a20. The variables are averages for the ten tanks and the numbers in parenthesis below each variable are standard deviations. 

Weeks

1 2 3 4 5 6 7 8 9 10 11

DD20 0.5368 0.8054 0.8815 0.8776 0.9428 0.7681 0.7049 0.6375 0.5335 0.4844 0.4918
(0.1989)  (0.0886) (0.1518) (0.0953) (0.1582) (0.0603) (0.0842) (0.0925) (0.1344) (0.1608) (0.1773)

D1 1.9904 1.9750 1.9714 1.9645 1.9523 1.9633 1.9741 1.9778 1.9830 1.9878 1.9847
(0.0068) (0.0031) (0.0083) (0.0107) (0.0096) (0.0095) (0.0109) (0.0094) (0.0095) (0.0091) (0.0143)

Da20 0.7278 1.0107 1.0770 1.0719 1.1371 0.9509 0.8856 0.8144 0.6990 0.6440 0.6495
(0.2082) (0.0951) (0.1542) (0.1020) (0.1680) (0.0697) (0.0885) (0.1000) (0.1487) (0.1720) (0.1898)

Figure 4. The information dimension D1 as a function of time for 
one plate. The solid line represents D1, dashed lines are 95% confi-
dence intervals for testing against a random spatial distribution of 
periphytons’ biomass. All other plates showed similar patterns.
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scales. In the case of ecological systems, the arrival of new 
species should reach a point where we would observe a cas-
cade of local extinctions as a result of dynamic equilibrium.

Besides the observed self-similar spatial patterns, the tem-
poral development of the system should exhibit fractal prop-
erties. If you observe the system long enough extinctions of 
all sizes would be detected (Solé and Goodwin 2000). Such 
temporal fluctuations are typical of SOC systems and are 
called 1/f noise. To determine whether the biomass behaves 
like 1/f noise requires a minimum of 50 points (Miramontes 
and Rohani 2002), making it impossible to apply this analy-
sis for the biomass time series obtained in this experiment. In 
addition the species composition should be analyzed because 
extinctions might not cause biomass fluctuations. Further, it 
seems very unlikely that this mechanism is working because 
other similar experimental studies showed no trace of this 
kind of extinctions (Rodríguez 1992, 1994), at least for time 
scales of ecological interest.

Other mechanism that could produce SOC in the  
biomass’ dynamics of the periphyton’s succession is self-
generated detachment: a sizeable and rather sudden loss 
of biomass. This perturbation, mainly caused by bacterial 
degradation of the periphyton mat (Bouletreau et al. 2006), 
does not seem to propagate fast enough to produce the sepa-
ration of time scales required. Besides, it generally occurs in 
mature stages of the succession, thus we should not observe 
multifractal spatial distributions in the first weeks of the 
experiment. This leads us to disregard SOC as a possible 
mechanism.

These two characteristics of the periphyton communities 
(self-similarity and self-organization) suggest that some kind 
of criticality may be operating.

Classical criticality requires the fine tuning of an external 
parameter such as temperature but in our study system all 
external parameters were kept constant, with the exception 
of nutrients. In any case, the community shows multifractal-
ity in all the analyzed periods (not only at a particular time), 
which would rule out the possibility of this type of critical-
ity. Although there is a possibility that the environmental 
conditions in which we performed the study were exactly 
at the critical point. This could be excluded because we pre-
viously measured a similar periphyton’s colonization under 
slightly different enviromental conditions with exactly the 
same results.

In systems that exhibit SOC there exists an external force 
that slowly drives the development of the system. In the case 
of ecological systems in general and periphyton in particular, 
this can be thought of as the immigration of new species 
(Solé et al. 2002). In our experimental system this is simu-
lated by the added water with algae (see study system) that 
could potentially establish in the community. This pressure 
of individuals trying to colonize is called a force.

This force accumulates internally and was called ecologi-
cal memory in the context of wildfire ecosystems (Zinck and 
Grimm 2009). The accumulation continues up to a certain 
point where there is a release or relaxation of the system that 
happens at a time scale much shorter than the accumula-
tion, this phenomenon is known as a separation of temporal 

Figure 5. Spectrum of singularities a versus f (a) for different times of development of the periphyton community. The values shown are 
the means for each colonization time.
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Combining these with the dynamics of succession it is 
probable that in the first weeks the dominating mechanisms 
where related with stochastic colonization/growth and in the 
later stages of succession the mechanisms of positive interac-
tions became more relevant. In contrast, neutral clustering 
could be acting along the entire succession. The next chal-
lenge is to find characteristics to differentiate which mecha-
nism is acting or which ones are most important at different 
stages of succession.

This could be done using a mathematical models, but 
with a different approach to that used in most studies up to 
now. Usually the equilibrium state of the models is analyzed 
and the transient discarded, but in the case of the succes-
sion of periphyton the transient state is the important part 
to focus on. The succession of periphyton, and many natural 
systems, fail to reach an equilibrium state, and therefore we 
should study the transient dynamics from the perspective of 
self-organization and complex systems.
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