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Abstract: Changes in annual rainfall in five sub-regions of the Argentine Pampa Region 

(Rolling, Central, Mesopotamian, Flooding and Southern) were examined for the period 

1941 to 2010 using data from representative locations in each sub-region. Dubious series 

were adjusted by means of a homogeneity test and changes in mean value were evaluated 

using a hydrometeorological time series segmentation method. In addition, an association 

was sought between shifts in mean annual rainfall and changes in large-scale atmospheric 

pressure systems, as measured by the Atlantic Multidecadal Oscillation (AMO), the Pacific 

Decadal Oscillation (PDO) and the Southern Oscillation Index (SOI). The results indicate 

that the Western Pampas (Central and Southern) are more vulnerable to abrupt changes in 

average annual rainfall than the Eastern Pampas (Mesopotamian, Rolling and Flooding). 

Their vulnerability is further increased by their having the lowest average rainfall. The AMO 

showed significant negative correlations with all sub-regions, while the PDO and SOI 

showed significant positive and negative correlations respectively with the Central, Flooding 

and Southern Pampa. The fact that the PDO and AMO are going through the phases of their 

cycles that tend to reduce rainfall in much of the Pampas helps explain the lower rainfall 

recorded in the Western Pampas sub-regions in recent years. This has had a significant 

impact on agriculture and the environment. 
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1. Introduction 

Knowledge of rainfall in an agro-ecosystem is critical for sustainable land management [1–4]. The 

Pampa Region is Argentina’s main agricultural area. It is located in the east-central part of the country, 

covering the provinces of Entre Rios, Santa Fe, Córdoba, La Pampa and Buenos Aires (30°S to 40°S 

and 56°W to 65°W) [5,6]. 

The Pampa Region has a humid temperate climate, Cf in the Koppen-Geiger classification, as revised 

by [7]. East winds, driven by a semi-permanent anticyclone from the coast of Brazil, predominate. After 

being drawn across the Brazilian coastline, maritime subtropical air heads southeast, reaching up to 40° 

latitude in summer and about 30° latitude in winter. In this way, the Pampa Region receives sea winds 

throughout the year, with a moisture gradient decreasing from east to west. 

Several studies indicate that the westward advance of the agricultural frontier in the Pampas during 

the last quarter of the twentieth century [2] was favored by an increased in rainfall [8,9]. This increase 

in precipitation acted synergistically with technological innovations [10] and increased demand from 

international markets [11]. 

Some authors believe that the above mentioned increase in rainfall is permanent. They attribute it to 

increased energy in the climate system caused by global warming. In their view, this has led to an 

increased thermal regime throughout the country, affecting the whole of its climate [12–14]. In contrast, 

others suggest that these changes are reversible [1,4,15–17]. In their view, the Pampas have a long-term 

water cycle with wet and dry phases separated by transition periods during which the agricultural frontier 

either advances or retreats. 

This rain cycle hypothesis has been supported by recent studies showing an abrupt negative change 

in the water regime of the western Pampas Region in recent years [17,18] as well as by studies linking 

changes in rainfall teleconnections with regular or recurring oceanic indices [19–21]. The Atlantic 

Multidecadal Oscillation (AMO) and the Pacific Multidecadal Oscillation (PDO) have cycles of  

about 60 years [22]. This fact could explain low frequency variations in rainfall patterns. On the other 

hand, the Southern Oscillation Index (SOI) has an annual cycle [23], which could explain high  

frequency variations. 

This study examines shifts in mean annual precipitation from 1941 to 2010, the period for which 

homogeneous instrumental records are available. The purpose of the study is to assess the extent to which 

these changes have affected agricultural production in Argentina’s Pampa Region, and their possible 

relationship to cyclic large-scale phenomena such as the AMO, PDO and SOI. 

2. Materials and Methods 

Annual rainfall data from 34 locations in the Pampa Region for the period 1941–2010 were used 

(Table 1, Figure 1). Seven of the locations belonged to the Southern Pampa, eight to the Central Pampa, 

seven to the Flooding Pampa, five to the Mesopotamian Pampa and seven to the Rolling Pampa. Data 
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were provided by the National Weather Service (Servicio Meteorológico Nacional) and the National 

Institute for Agricultural Technology (INTA). Data for the Pacific Decadal Oscillation (PDO), the 

Atlantic Multidecadal Oscillation (AMO) and the Southern Oscillation Index (SOI) were obtained from 

the online database at: http://www.esrl.noaa.gov/psd/data/climateindices/list/. 

Table 1. Position of the different locations in the Pampa Region. 

Location Latitude (S) Longitude (W) Altitude (msl) Pampa Sub-Region 

Esperanza 31°27′ 60° 55′ 38 Rolling 
San Lorenzo 32°44′ 60° 44′ 40 Rolling 

Rosario 32°57′ 60° 39′ 25 Rolling 
Pergamino 33°44′ 60° 36′ 56 Rolling 

Cap. Sarmiento 34°10′ 59° 48′ 54 Rolling 
Junin 34°35′ 60° 56′ 81 Rolling 

La Plata 34°55′ 57° 57′ 26 Rolling 
Paraná 31°43′ 60° 31′ 77 Mesopotamian 

Villaguay 31°52′ 59° 00′ 40 Mesopotamian 
C del Uruguay 32°29′ 58° 14′ 50 Mesopotamian 
Gualeguaychú 33°00′ 58° 30′ 15 Mesopotamian 

Gualeguay 33°08′ 59° 19′ 12 Mesopotamian 
Río Cuarto 33°07′ 64° 20′ 452 Central 
Laboulaye 34°07′ 63° 23′ 131 Central 

Gral. Villegas 35°01′ 63° 00′ 105 Central 
Realicó 35°01′ 64° 15′ 146 Central 

Trenque Lauquen 35°58′ 62° 43′ 80 Central 
Riglos 36°51′ 63° 42′ 126 Central 

Macachín 37°09′ 63° 39′ 130 Central 
Bernasconi 37°54′ 63° 43′ 162 Central 
Chivilcoy 34°53′ 60° 01′ 53 Flooding 

Alberti 35°01′ 60° 16′ 38 Flooding 
Saladillo 35°38′ 59° 46′ 43 Flooding 

Las Flores 36°03′ 59° 06′ 36 Flooding 
Dolores 36°18′ 57° 40′ 7 Flooding 

Azul 36°46′ 59° 51′ 137 Flooding 
Olavarría 36°53′ 60° 19′ 150 Flooding 

Tandil 37°19′ 59° 08′ 188 Southern 
Cnel.Suárez 37°28′ 61° 56′ 298 Southern 

Puán 37°32′ 62° 46′ 222 Southern 
Saavedra 37°45′ 62° 21′ 334 Southern 

Mar del Plata 38°00′ 57° 33′ 38 Southern 
Tornquist 38°06′ 62° 14′ 276 Southern 

Tres Arroyos 38°22′ 60° 16′ 98 Southern 
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Figure 1. Location map of the Pampa Region, sub regions and localities. 

2.1. Homogeneity Test 

A series of climate data is uniform if “... variations have only been caused by variations in weather 

and climate” [24]. A climatic series may no longer be uniform if the measuring station has changed its 

location, instruments, or weather observation procedures [25]. 

According to the previous statement, pre-1941 data were discarded because, in the period 1932–1940, 

the Argentine National Weather Service, proceeded to change the A type rain gauges that were 

previously used, by the B type rain gauges [26]. 

The homogeneity of the precipitation series was tested using [27] Standard Normal Homogeneity 

Test (SNHT) on AnClim software [28]. The test was applied to series of annual values, using the average 

annual rainfall of each sub-region as a reference series. 

For each series a series of ratios |ݍi|௜ୀଵே  were estimated between the observed value of the series to 

which the test was applied and the value of the reference series. The standardized series of ratios |ݖi|௜ୀଵே 	were estimated for which ݖi Sq (1)/( iݍ-iݍ) =

where ݍ and sq are the mean and sample standard deviation of the qi series. 

Let 1 ≤ ν < N and μ1 ≠ μ2 where N is the number of years of data available. 

The purpose is to test the null hypothesis: ܪ଴:  ݅∀	௜~ܰሺ0,1ሻݖ
With respect to the alternative hypothesis: ܪଵ: ,௜~ܰሺμଵݖ 1ሻ݅ ൑ :ଵܪ ݒ ,ଶߤ௜~ܰሺݖ 1ሻ݅ ൐  ݒ
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The null hypothesis implies that the mean of standardized series zi does not change over time, whereas 

the alternative hypothesis suggests that for some time ν there is a change in the mean of the series. 

The test statistic to determine whether a change has occurred in the mean of series zi is ଴ܶ = maxଵஸ௩ழேሼ ௩ܶሽ (2)

where Tν = ν zଵଶ + ሺN − νሻzଶଶ (3)zଵ and zଶ are the sample means of the first ν and last (N − ν) values of the series zi. If T0 is greater 

than some critical level for a given significance level of the test, the null hypothesis which states that the 

series is homogenous can be rejected. According to [29], the critical values for the test at significance 

level α = 0.05 for a series length N = 70 is 8.800. To adjust the detected inhomogeneities, the setting 

method indicated in [30] was applied using the software AnClim [28]. 

The average series was calculated for the homogeneous and the adjusted inhomogeneous annual 

precipitation series of each sub region which, in turn, was used to evaluate shifts in the mean value. 

2.2. Detecting Shifts in the Mean 

Shifts in mean annual precipitation were detected using Hubert’s method of segmentation of 

hydrometeorological time series [31]. The precipitation time series for each sub region was calculated 

as the mean of the corresponding homogeneous series, as defined by the SNHT test. 

Hubert’s segmentation method divides the series into m segments (m > 1) so that the calculated mean 

over the entire series is significantly different from the means of neighboring segments. 

Segmentation is defined as follows: Any series xi, i = i1, i2 with i1 ≥ 1 and i2 ≤ N where (i1 < i2) is a 

segment of the initial series of (xi), I = 1, ..., N. 

Any division of the initial series into m segments is an m-order segmentation of this series.  

Thus, from a particular m order segmentation performed on the initial series, we define: 

ik,k = 1,2,…, m 

nk = ik − ik − 1 

௞ݔ = ቎ ෍ ௜௜ୀ௜ೖݔ
௜ୀ௜ೖషభାଵ ቏ /݊௞ (4)

௠ܦ = ෍ ݀௞௞ୀ௠
௞ୀଵ  (5)

with 

݀௞ = ෍ ሺݔ௜ − ௞ሻଶ௜ୀ௜ೖݔ
௜ୀ௜ೖషభାଵ  (6)

The segmentation obtained should be such that for a given segment order m, the standard  

deviation Dm is minimal. This is a necessary but not a sufficient condition to determine the optimal 
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segmentation. It should be noted that the means of two adjacent segments must be significantly different. 

This constraint is met by applying the Scheffé test [32]. 

The variability coefficient was calculated using the standard deviation and the mean of each 

respective segment. 

2.3.The AMO-PDO-SOI-precipitation relationship 

Teleconnections from AMO, PDO and SOI to annual rainfall were evaluated through Pearson 

correlation analysis. Since [33] consider that PDO events persist for over 20 years, correlation lags were 

performed from 1 to 20 years. 

The AMO and PDO are ocean oscillations with negative and positive phases taking between 20 and 

40 years [34–37], thus given total cycles of about 40 to 80 years (Figures 2 and 3). Consequently, they 

can be associated with low frequency changes in rainfall. On the other hand, the SOI is an atmospheric 

index with an annual oscillation period [38] and is therefore associated with high frequency variations 

in rainfall (Figure 4). 

 

Figure 2. Atlantic Multidecadal Oscillation (AMO). 

 

Figure 3. Pacific Multidecadal Oscillation (PDO). 



Climate 2015, 3 156 

 

 

 

Figure 4. Southern Oscillation Index (SOI). 

3. Results and Discussion 

3.1. Homogeneity Test 

Twenty-six of the available annual rainfall series (Table 2) showed a T value smaller than the  

critical value [29] and can be considered homogeneous at the level of significance α = 0.05. The other 

eight series had T values greater than the critical value and were thus considered non-homogeneous.  

They were adjusted for the analysis by the setting method indicated in [30]. 

Table 2. Test results of the Standard Normal Homogeneity Test (SNHT) applied to annual 

precipitation series from the Pampa Region. (* indicates that the T value exceeds 95%). 

Location Shift Year T Value Shift Year Adjusted T Value Adjusted

Esperanza 1944 4.315   
San Lorenzo 2003 3.356   

Rosario 1973 13.954 * 1996 7.493 
Pergamino 2005 6.993   

Cap. Sarmiento 1952 24.639 * 1996 5.321 
Junin 2001 3.305   

La Plata 2008 7.669   
Paraná 1948 5.299   

Villaguay 1943 6.498   
C del Uruguay 1995 5.444    
Gualeguaychú 1979 3.302   

Gualeguay 1975 8.022   
Río Cuarto 1968 22.476 * 1985 3.796 
Laboulaye 1976 5.436   

Gral. Villegas 2003 5.370   
Realicó 2010 6.746   

Trenque Lauquen 1956 7.366   
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Table 2. Cont. 

Location Shift Year T Value Shift Year Adjusted T Value Adjusted

Riglos 1977 10.936 * 1946 3.084 
Macachín 2009 3.678   

Bernasconi 2005 5.645   
Chivilcoy 1990 15.885 * 1999 6.327 

Alberti 2000 2.906   
Saladillo 1977 3.186   

Las Flores 1990 2.312   
Dolores 2001 5.103   

Azul 1991 6.187   
Olavarría 1944 4.596   

Tandil 1982 5.874   
Cnel. Suárez 2005 9.750 * 2009 2.843 

Puán 1976 2.431   
Saavedra 1958 9.530 * 2009 4.720 

Mar del Plata 2000 3.226   
Tornquist 1964 3.887   

Tres Arroyos 2010 10.071 * 1963 2.905 

3.2. Detecting Changes in the Mean 

The results for the sub-regional average annual rainfall series of the Argentine Pampas Region by 

Hubert’s segmentation method [31] are detailed in Table 3. 

Table 3. Segmentation of the annual precipitation series for the sub-regions of the Pampa 

Region by Hubert’s segmentation method [31]. 

Sub-Regions Sub-Period Mean (mm) Standard Deviation Variation Coefficient

Rolling Pampa 
1941–1999 971.9 142.8 14.7 
2000–2002 1349.3 56.7 4.2 
2003–2010 1005.2 191.8 19.0 

Mesopotamian Pampa 
1941–1999 1062.9 197.9 18.6 
2000–2003 1568.9 211.1 13.4 
2004–2010 1108.0 289.5 26.1 

Central Pampa 

1941–1965 721.3 126.2 17.5 
1966–1996 900.0 132.8 14.7 
1997–2002 1126.0 158.8 14.1 
2003–2010 762.2 149.9 19.7 

Flooding Pampa 
1941–2000 952.7 118.9 12.5 
2001–2002 1272.2 10.9 0.9 
2003–2010 844.5 112.9 13.4 

Southern Pampa 
1941–2000 819.3 137.1 16.7 
2001–2002 1155.2 85.9 7.4 
2003–2010 745.3 103.5 13.9 
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The Rolling Pampa sub-region average (Figure 5) showed two abrupt changes. The first of these was 

positive, with the average annual precipitation rising from 971.9 mm during 1941–1999 the sub-period, 

to 1349.3 mm during a very short sub-period ranging from 2000 to 2002. In 2003, a negative change 

dropped the average annual rainfall to 1005.2 mm, only slightly higher than what it had been in the initial 

1941–1999 sub-period. 

 

Figure 5. Annual precipitation and means for sub-periods in the Rolling Pampa sub-region 

by Hubert’s segmentation method. 

The mean for the Mesopotamian Pampa sub-region showed a very similar behavior with two  

abrupt shifts (Figure 6). The first of these was positive, with annual average rainfall increasing from 

1062.9 mm during the 1941–1999 sub-period to 1568.9 mm during a short sub-period between 2000 and 

2003. The second abrupt change, which began in 2004, was negative, with average annual rainfall 

dropping to 1108.0 mm, only slightly higher than what it had been in the initial 1941–1999 sub-period. 

 

Figure 6. Annual precipitation and means for sub-periods in the Mesopotamian Pampa sub 

region by Hubert’s segmentation method. 
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The Central Pampa sub region (Figure 7) showed a more complex behavior, with two abrupt positive 

changes in close succession. The first brought average annual precipitation from 721.3 mm during the 

sub-period 1941–1965, to 900.0 mm during the sub-period 1966–1996. The second abrupt positive 

change raised average annual rainfall to 1126.0 mm between 1997 and 2002. It is noteworthy that after 

this short wet sub-period of just five years, a negative abrupt change beginning in 2003 reduced average 

annual rainfall to 762.2 mm, very similar to the mean precipitation for the initial 1941–1965 sub-period. 

 

Figure 7. Annual precipitation and means for sub-periods in the Central Pampa sub region 

by Hubert’s segmentation method. 

 

Figure 8. Annual precipitation and means for the 1941–2010 period in the Flooding  

Pampa sub-region. 

The mean for the Flooding Pampa sub-region showed two abrupt changes (Figure 8). The first was 

positive, with annual average rainfall increasing from 952.7 mm during the 1941–2000 sub-period, to 
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1272.2 mm for the 2001–2002 sub-period. The second abrupt change, which began in 2003, was 

negative, with average annual rainfall dropping to 844.5 mm, which is lower than it had been during the 

initial 1941–2000 sub-period. 

The mean for the Southern Pampa sub-region showed two abrupt changes (Figure 9). The first was 

positive, with annual average rainfall increasing from 819.3 mm during the 1941–2000 sub-period, to 

1155.2 mm for the 2001–2002 sub-period. The second abrupt change, which began in 2003, was 

negative. Here average annual rainfall dropped to 745.3 mm, which is lower than it had been during the 

initial 1941–2000 sub-period. 

 

Figure 9. Annual precipitation and means for the sub-periods in the Southern Pampa sub 

region by Hubert’s segmentation method. 

3.3. Associations from Rainfall to the AMO, PDO and SOI 

The most significant AMO teleconnections to precipitation in Argentina’s Pampa Region were 

observed at lag −10 years in the Rolling (RP), Mesopotamian (MP), Flooding (FP) and Southern (SP) 

sub-regions and at lag −8 years in the Central Pampa sub-region (Table 4). 

The fact that these correlations are negative indicates that, when the Atlantic Ocean warms, rainfall 

tends to show a decrease in mean value and an increase in variability over much of the Pampa Region. 

This has a negative impact on agricultural production. 

The fact that AMO significant correlations begin as much as lag −10, suggest that its influence is 

transferred very slowly to the atmosphere, and therefore it takes several years before sensible changes 

in rainfall behavior are detected. 

It also suggest that AMO influence may be cumulative, requiring several years to reach an activation 

threshold strong enough to cause changes in rainfall behavior. 

This also causes that, in spite that AMO is mainly a summer signal, it is capable of influencing  

annual values. 
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Statistically significant PDO teleconnections to precipitation in Argentina’s Pampa Region were 

observed at lags of 4 years in the Central Pampa sub-region, and at lags of 4 to 6 years in the Flooding 

and Southern Pampa sub-regions (Table 5). 

Table 4. Correlation coefficients between the Atlantic Multidecadal Oscillation (AMO) and 

annual rainfall time series for the Pampa Region. 

Lag RP MP CP FP SP 

−20 −0.0234 −0.0295 −0.1298 −0.0865 −0.0985 
−19 −0.1980 −0.1183 −0.2139 −0.1938 −0.1513 
−18 −0.1817 −0.0829 −0.2486 −0.2476 −0.2433 
−17 −0.3121 −0.1666 −0.3049 −0.2739 −0.2880 
−16 −0.3537 −0.2378 −0.3474 −0.2631 −0.2292 
−15 −0.2213 0.0011 −0.3032 −0.1528 −0.1696 
−14 −0.1662 −0.0323 −0.2564 −0.0857 −0.1255 
−13 −0.2599 −0.0959 −0.3388 −0.2031 −0.2153 
−12 −0.1894 −0.0677 −0.3549 −0.2341 −0.2339 
−11 −0.1803 −0.1188 −0.4051 −0.2725 −0.2863 
−10 −0.3154 −0.2784 −0.4779 −0.3924 −0.4367 
−9 −0.2784 −0.2620 −0.4186 −0.3249 −0.3048 
−8 −0.2263 −0.1892 −0.5283 −0.3139 −0.4121 
−7 −0.2617 −0.1803 −0.5054 −0.2564 −0.3619 
−6 −0.1967 −0.1124 −0.3399 −0.2136 −0.2970 
−5 −0.1884 −0.0405 −0.4449 −0.1158 −0.2295 
−4 −0.1047 0.0457 −0.2532 −0.1703 −0.1450 
−3 −0.0188 0.0391 −0.1540 −0.0716 −0.0566 
−2 −0.0887 −0.0878 −0.2529 −0.1607 −0.0947 
−1 −0.0956 −0.0383 −0.2681 −0.2482 −0.2158 
0 −0.1376 −0.1107 −0.3000 −0.2237 −0.2291 

RP Rolling Pampa, MP Mesopotamian Pampa, CP Central Pampa, FP Flooding Pampa, SP Southern Pampa; 

The critical value of Pearson’s correlation coefficient at the 0.05 level of significance is 0.232. Values in bold 

are statistically significant at the 95% level. 

The fact that the correlations are positive indicates that as the North Pacific warms, precipitation 

increases in part of the Pampa Region and vice versa. Therefore, positive phases of this cycle favor the 

Argentine agricultural sector, while the negative phases are unfavorable. 

As in the case of AMO, the fact that significant correlations begin as much as lag −10, suggest that 

its influence is transferred very slowly to the atmosphere, and therefore it takes several years before 

sensible changes in rainfall behavior are detected. 

Similarly, PDO influence may be cumulative, requiring several years to reach an activation threshold 

strong enough to cause changes in rainfall behavior. 

Although significant, all PDO correlations were weaker than those of AMO, showing that, by itself, 

It has little influence on the pampean rainfall regime. Nevertheless it may have some synergetic 

interaction with the AMO, whose cycle is almost inverse. 
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Statistically significant SOI teleconnections to precipitation in the Argentina Pampa Region were 

observed during the first year of each period in the Flooding and Southern Pampa sub-regions and at  

lag 7 years in the Central Pampa sub-region (Table 6). 

Table 5. Correlation coefficients between the Pacific Decadal Oscillation (PDO) and the 

annual rainfall time series for the Pampa Region. 

Lag RP MP CP FP SP 

−20 −0.0543 0.0568 −0.1610 −0.0764 −0.0577 
−19 0.0604 0.2292 −0.1320 −0.0274 −0.0830 
−18 0.0036 0.0694 −0.0706 −0.0665 −0.0220 
−17 −0.0109 −0.0062 −0.0415 0.0065 0.0634 
−16 −0.0577 0.0683 0.0108 −0.0543 0.0128 
−15 −0.0162 0.1001 0.0764 0.0620 0.0741 
−14 0.0008 0.1935 0.0422 −0.0051 −0.0054 
−13 0.0029 0.0735 −0.0938 −0.1100 −0.0600 
−12 −0.0055 0.0036 −0.0171 −0.0738 0.0647 
−11 −0.2090 −0.1962 −0.0649 −0.1414 −0.0270 
−10 0.0132 0.1259 0.0272 0.0514 0.0792 
−9 0.0106 0.0590 0.0504 0.1032 0.0867 
−8 0.0225 0.0808 −0.0227 −0.0027 0.0134 
−7 0.0333 0.0667 0.0253 0.0142 0.0136 
−6 0.1821 0.1085 0.1702 0.3433 0.3007 
−5 0.1672 0.1228 0.1776 0.3301 0.2436 
−4 0.1207 −0.0415 0.3078 0.2349 0.2802 
−3 0.0286 −0.0770 0.1123 0.0310 0.0494 
−2 −0.1187 −0.1685 −0.0357 −0.0684 −0.1233 
−1 −0.0206 −0.0640 0.0991 0.1014 0.0436 
0 0.1565 0.0601 0.2094 0.2731 0.1721 

RP Rolling Pampa, MP Mesopotamian Pampa, CP Central Pampa, FP Flooding Pampa, SP Southern Pampa; 

The critical value of Pearson’s correlation coefficient at the 0.05 level of significance is 0.232. Values in bold 

are statistically significant at the 95% level. 

The fact that the correlations are negative indicates that when the trade winds strengthen,  

precipitation decreases in part of the Pampa Region and, conversely, when the trade winds slacken, 

precipitation increases. Therefore, the negative half of the SOI cycle, associated with “El Nino”  

events, favors the Argentine agricultural sector while the positive half, associated with “La Niña” events, 

is unfavorable. 

It must be pointed out that SOI correlations to annual rainfall are necessarily weak because this 

atmospheric index acts predominantly during the spring and summer [39], and therefore its influence is 

blurred by the use of annual data. 
  



Climate 2015, 3 163 

 

 

Table 6. Correlation coefficients between the Southern Oscillation Index (SOI) and annual 

rainfall time series for the Pampa Region. 

Lag RP MP CP FP SP 

−20 −0.1412 −0.1968 −0.1222 −0.1595 −0.1755 
−19 −0.1681 −0.1501 −0.0653 −0.0865 −0.0105 
−18 −0.0929 −0.1157 0.0724 0.0818 0.1036 
−17 0.1892 0.2180 0.0089 0.1039 0.0454 
−16 0.0157 −0.0846 0.0048 0.0524 0.0439 
−15 −0.0841 −0.1398 −0.2318 −0.0977 −0.1329 
−14 −0.0134 −0.0185 −0.0278 0.1175 0.0237 
−13 −0.0938 −0.1056 0.0423 0.1033 0.0166 
−12 −0.0162 0.0007 0.0804 0.1292 0.0089 
−11 0.0608 0.0579 0.0197 0.0456 0.0087 
−10 −0.2102 −0.1870 −0.2033 −0.1881 −0.1416 
−9 −0.1095 −0.0979 −0.0246 −0.0499 −0.0109 
−8 −0.2023 −0.2033 −0.0182 −0.1213 −0.0179 
−7 −0.0267 −0.0123 −0.2904 −0.0061 −0.1194 
−6 −0.1305 −0.1348 −0.1356 −0.1974 −0.1360 
−5 −0.0313 0.0223 −0.1598 −0.0586 −0.1237 
−4 −0.0491 0.0403 −0.1913 −0.0097 −0.0418 
−3 0.1789 0.2257 0.0934 0.0505 0.0424 
−2 0.2139 0.1670 0.0626 0.1313 0.1420 
−1 −0.0056 −0.1194 0.0347 −0.0336 0.0004 
0 −0.1580 −0.0407 −0.2212 −0.3848 −0.3741 

RP Rolling Pampa, MP Mesopotamian Pampa, CP Central Pampa, FP Flooding Pampa, SP Southern Pampa; 

The critical value of Pearson’s correlation coefficient at the 0.05 level of significance is 0.232. Values in bold 

are statistically significant at the 95% level. 

4. Conclusions 

Hubert’s method of segmentation of hydrometeorological time series [31] show that Argentina’s 

Pampa Region is subject to sudden shifts in average rainfall. 

The Rolling Pampa, the Mesopotamian Pampa, the Flooding Pampa and the Southern Pampa showed 

a quite similar behavior, that can be described as follows: 

(1) Stable behavior during the middle and final portions of the XX Century. 

(2) A very short lived abrupt positive shift at the beginning of the XXI Century. 

(3) An abrupt negative shift in the mid 2000s which returned the rainfall average to approximately 

its previous level. 

Consequences differed, according to the phisiography of each sub-region: 

As most of the Rolling Pampa has well-drained sloping soils, the increase in rainfall at the  

beginning of the century allowed the farmers to increase its production capacity, without being affected 

by flooding [40]. 

The Southern Pampa sub-region briefly benefited of the short lived increase in rainfall experienced 

at the begining of the century, increasing its agricultural area and its livestock. Unfortunately, when 
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rainfall abruptly returned to its previous level, the sub-region agricultural economy was severely 

affected, and dust storms began to be common [41]. 

On the opposite, at the begining of the century, the positive shift in rainfall negatively affected the 

Flooding Pampa sub-region. Large tracts of low-lying land see extensive flooding, which greatly 

curtailed its productive capacity. The reduction of rainfall during the last several years helped the  

sub-region to recuperate [42]. 

As previously told, the Central Pampa followed a particular evolution. 

The early positive shift experienced in the mid sixties, as well as the late one, observed in the late 

nineties, greatly favored an increase in crop growing area and livestock. 

This process generated a state of high vulnerability to climate shifts, and therefore, when the rainfall 

average dropped in the early years of the new century, the sub-region suffered a severe negative impact, 

as well as a severe environmental impact [41]. 

With regard to the possible causes of the variations described, the study showed the existence of 

teleconnections between climate fluctuation modes (AMO, PDO, and SOI) and precipitation,  

especially precipitation in the Central, Flooding and Southern Pampa sub-regions. In fact, the AMO 

showed significant negative correlations with all the sub-regions. On the other hand, the PDO and SOI 

showed significant positive and negative correlations respectively with the Central, Flooding and 

Southern Pampa. 

Both the PDO and the AMO are going through phases that tend to reduce rainfall in much of the 

Pampas. This helps to explain the lower rainfall recorded in the western sub-regions of the Pampa Region 

in recent years, together with a consistent downward trend in production and the environment. 

The AMO is currently going through a positive phase [43] while the PDO is undergoing a negative 

phase [44]. Their combined negative effects help explain the reduction in mean rainfall and the increase 

in rainfall variability during the last years of the period analyzed. 

The negative teleconnection with the SOI accounts for the fact that Argentina’s agricultural 

production increases during episodes of “El Niño” (weak trade winds) and decreases during episodes of 

“La Niña” (strong trade winds) [3,45]. 

As a final conclusion, it may be pointed that the results of this study shows that the Pampa Region 

experiences abrupt changes in its rainfall regime, that cause severe impacts in its agricultural economy 

and its environmental stability. As long as the PDO remains negative and the AMO positive, the rainfall 

regime will remain at its low state, and therefore, the Pampa Region will be at risk. This situation creates 

the risk that the agricultural production system may exceed the environment’s carrying capacity, leading 

to decreased production and environmental degradation [46]. 
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