
This article was downloaded by: [Gladys Elena Salcedo]
On: 23 August 2012, At: 13:09
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Applied Statistics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/cjas20

A wavelet-based time-varying
autoregressive model for non-stationary
and irregular time series
G. E. Salcedo a , R. F. Porto b , S. Y. Roa a & F. R. Momo c
a Department of Mathematics, University of Quindío, Carrera 15
Calle 12N, Armenia, Colombia
b Department of Operating Assets Restructuring, Bank of Brazil,
Brasília, Brazil
c Institute of Science, National University of General Sarmiento,
Buenos Aires, Argentina

Version of record first published: 23 Aug 2012

To cite this article: G. E. Salcedo, R. F. Porto, S. Y. Roa & F. R. Momo (2012): A wavelet-based
time-varying autoregressive model for non-stationary and irregular time series, Journal of Applied
Statistics, DOI:10.1080/02664763.2012.702267

To link to this article:  http://dx.doi.org/10.1080/02664763.2012.702267

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/cjas20
http://dx.doi.org/10.1080/02664763.2012.702267
http://www.tandfonline.com/page/terms-and-conditions


Journal of Applied Statistics
2012, iFirst article

A wavelet-based time-varying autoregressive
model for non-stationary and irregular

time series

G.E. Salcedoa∗, R.F. Portob, S.Y. Roaa and F.R. Momoc

aDepartment of Mathematics, University of Quindío, Carrera 15 Calle 12N. Armenia, Colombia;
bDepartment of Operating Assets Restructuring, Bank of Brazil, Brasília, Brazil; cInstitute of Science,

National University of General Sarmiento, Buenos Aires, Argentina

(Received 25 November 2011; final version received 9 June 2012)

In this work we propose an autoregressive model with parameters varying in time applied to irregularly
spaced non-stationary time series. We expand all the functional parameters in a wavelet basis and estimate
the coefficients by least squares after truncation at a suitable resolution level. We also present some
simulations in order to evaluate both the estimation method and the model behavior on finite samples.
Applications to silicates and nitrites irregularly observed data are provided as well.

Keywords: irregularly spaced time series; locally stationary processes; autoregressive model;
multiresolution analysis; wavelets

1. Introduction

In time series analysis, most samples are regularly observed over time in which case we say
the time series is regular. However, in some real situations it is not possible to obtain equally
spaced observations. For these cases, when the time series are said to be irregular, there are
some approaches to modeling but most of them focus only on deterministic trends while other
approaches consider irregular time series as data with missing observations (see [8,9,15,16,22])
or apply smoothing techniques, as was done by Cipra [7] and Kitagawa [17]. Simple exponen-
tial smoothing for irregular data was also suggested by Wright [24] and Cipra [7], and double
exponential smoothing is given by Cipra [7]. Parametric models have been proposed by Broersen
and Bos [2], who present an algorithm for maximum likelihood estimation of autoregressive
moving average models for irregular data. In [16,17,22,23], the authors have used state-space
representations to fit continuous-time autoregressions to unequally spaced time series.
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2 G.E. Salcedo et al.

While these models consider mainly stationary time series, Dahlhaus et al. [11] have proposed
time-varying autoregressive (tv-AR) models for regular time series that have a locally stationary
behavior and used a temporal rescaling in order to facilitate the development of an asymptotic
theory. Their models are alike the functional-coefficient autoregressive (FAR) models (see [4,5],
for instance), but Dahlhaus’ tv-AR models are based on wavelet expansions of the functional
parameters with coefficients estimated by ordinary least squares. This technique has been applied
by Chiann and Morettin [6] for time-varying linear systems and by Sato et al. [21] for vector
autoregressive models with parameters varying in time, both based on locally stationary processes.
On the other hand, Cai and Brown [3] in the context of regression models, have presented a
procedure to properly fit and estimate functional trend models for irregular time series using
wavelets.

In this paper we propose an autoregressive model with parameters varying in time in order
to model the dynamics of a non-stationary time series irregularly observed over time. The
non-stationarity is explained by the functional parameters and the irregularity is explicit in the
functional indexes. Our model can be considered as an extension of tv-AR models to the case of
irregular time series.

The paper is organized as follows. Section 2 briefly describes wavelet bases and functional
wavelet expansions. Section 3 introduces the non-equispaced model and the estimation procedure
for autoregressive models varying in time. In Section 4 we give some statistical properties of our
estimator. A simulation study is given in Section 5 and two applications are presented in Section 6.
Finally, some conclusions are presented in Section 7.

2. Wavelets and wavelet approximations

An orthonormal wavelet basis is generated from dilation and translation of a “father” wavelet
φ and a “mother” wavelet ψ . These functions are assumed to be compactly supported in [0, T ]
and φ satisfies

∫
φ = 1. A wavelet is r-regular if it has r vanishing moments and r continuous

derivatives. A wavelet ψ satisfies the admissibility condition if it is 1-regular.
Let

φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k), j, k ∈ Z,

where φj,k(t) and ψj,k(t) are the scaling and the wavelet functions, respectively, at level j and
translation index k. Thus, ψj,k has support [2−jk, 2−j(T + k)]. Notice that the support of the
wavelets are translated by shifts of 2−j.

Also, the periodized wavelets (see [10]) are given by

φ̃j,k(t) =
∑
l∈Z

φj,k(t − l) and ψ̃j,k(t) =
∑
l∈Z

ψj,k(t − l),

for t ∈ [0, 1]. These are the wavelets that we will use in this paper and so the superscript “∼” will
be suppressed thereafter. For a given j0 ∈ Z, the collection

{φj0,k , k = 0, . . . , 2j0 − 1; ψj,k , j ≥ j0, k = 0, . . . , 2j − 1}

constitutes an orthonormal basis of L2[0, 1], the space of square-integrable functions. Notice that
for each level j we have 2j basis functions.

Such an orthogonal wavelet basis has an associated multiresolution analysis on [0, 1] that
enables one to analyze the data through a number of resolution scales. Let Vj and Wj, j ∈ Z, be
the closed linear subspaces generated by {φj,k , k = 0, . . . , 2j − 1} and {ψj,k , k = 0, . . . , 2j − 1},
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Journal of Applied Statistics 3

respectively. Then,

(i) · · · ⊂ Vj0−1 ⊂ Vj0 ⊂ Vj0+1 ⊂ · · · ⊂ Vj ⊂ · · · ,
(ii) ∪∞

j=−∞Vj = L2[0, 1],
(iii) Vj+1 = Vj ⊕ Wj,
(iv) Wj ⊥ Vj.

Denote the usual inner product by 〈·, ·〉. For a given square-integrable function f (t), t ∈ [0, 1],
we have that the wavelet transform is given by

cj0,k = 〈f , φj0,k〉 and dj,k = 〈f , ψj,k〉, (1)

where cj0,k and dj,k , j ≥ j0, and k = 0, . . . , 2j − 1, are the wavelet coefficients of the coarse and
the details scales, respectively.

So, for a given j0 ≥ 0, the function f (t) can be expanded, in L2 norm sense, into an infinite
wavelet series as

f (t) =
2j0 −1∑
k=0

cj0,kφj0,k(t) +
∞∑

j=j0

2j−1∑
k=0

dj,kψj,k(t), t ∈ [0, 1], (2)

i.e., the wavelet transform decomposes the function into different resolution components.
In practice, j0 = 0 and the expansion in Equation (2) is approximated by the finite summation

f (t) = c0,0φ0,0(t) +
J−1∑
j=0

2j−1∑
k=0

dj,kψj,k(t) =
J−1∑

j=−1

2j−1∑
k=0

dj,kψj,k(t), t ∈ [0, 1], (3)

where d−1,0 = c0,0 and ψ−1,0(t) = φ0,0(t), and J is chosen based on the expected smoothing degree
of the function f .

“Daublets”, “Symmlets” and “Coiflets” are the most used wavelet bases and were introduced
by Daubechies in [12]. These wavelets are orthogonal and have compact support. Other useful
wavelet bases are “Morlet”, “Mexican hat” and “Shanon” (see [18] for example).

3. Model and estimation procedure

Consider the irregular autoregressive model of known order p ≥ 1

Xti = f1(ti)Xti−1 + f2(ti)Xti−2 + · · · + fp(ti)Xti−p + εti , (4)

for non-equispaced observations {Xti}, i = 1, 2, . . . , T = 2N , N ∈ N, 0 < t1 < t2 < · · · < tT < 1
and independent and identically distributed errors εti ∼ N(0, σ 2

ε ). We could alleviate the require-
ment that the sample size T is a power of 2. However, as will be clear ahead, our estimation
procedure uses the values of ψj,k(i/T), for i = 1, . . . , T , which are computationally easier to
obtain when this requirement is met. Since using sample sizes that are a power of 2 is convenient
for us and it is usual in the wavelet literature, we decided to keep it up throughout the paper. The
functions fl(ti) are intended to capture the non-stationarity and the data irregularity. Our main
problem consists in estimating all the p functions fl(·) and the variance error σ 2

ε from a finite set
of irregular observations {Xti , i = 1, 2, . . . , T}.

Besides its ability of fitting some non-stationary time series, model (4) can be physically
motivated by measurements Xti , taken at time or location ti, that are simultaneously dependent on
the continuous time t ∈ (ti−1, ti+1) (as indicated by the notation) and on previous measurements
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4 G.E. Salcedo et al.

Xti−1 , . . . , Xti−p . This can be seen as a sort of mix between deterministic continuous-time models
f1, . . . , fp and a stochastic discrete-time model based on Xti−1 , . . . , Xti−p . Consider, for instance, that
the indexes ti are locations of waste water treatment plants on a river. Water quality measurements
made at one station clearly depend on water treatments measured in previous stations and on the
length of the river upstream of its previous plant. This happens because the water treated by one
plant is expected to show a decreasing quality pattern for an increasing length from the plant,
mainly due to chemical dilution, new waste discharges, rain and other physical causes (see, for
instance, [20]).

Our estimation procedure is based on least-squares estimation of the coefficients of a previous
wavelet expansion for the functions fl(·), l = 1, . . . , p. Since standard wavelet procedures are well
suited for equispaced samples, wherein ti are equally spaced on [0, 1], non-equispaced samples
should not in general be directly treated as equispaced. In order to deal with this aspect, we
suppose that ti = H−1(i/T), i = 1, 2, . . . , T , where H is a mapping cumulative density function
H on [0, 1] (see [2]).

Consequently,

fl(ti) = fl

(
H−1

(
i

T

))
, i = 1, 2, . . . , T , l = 1, . . . , p, (5)

i.e. each value fl(ti) from an unequally spaced point is mapped to a value of the composite function
fl ◦ H−1 at the equally spaced point i/T . Notice that the points ti are assumed to be fixed, not
randomly drawn from H.

Let the functions gl = fl ◦ H−1 be such that fl(ti) = gl(i/T), meaning that gl(i/T) is the
equispaced representation of fl(ti) mapped through the function H.

Thus, the equispaced model equivalent to Equation (4) is given by

Xti = g1

(
i

T

)
Xti−1 + g2

(
i

T

)
Xti−2 + · · · + gp

(
i

T

)
Xti−p + εti . (6)

Using only one wavelet basis to expand each functional parameter gl(·), model (6) can be
represented as

Xti =
p∑

l=1

⎡
⎣ J−1∑

j=−1

2j−1∑
k=0

dl
j,kψj,k

(
i

T

)⎤
⎦ Xti−l + sti + εti , i = 1, 2, . . . , T , (7)

where

sti =
p∑

l=1

⎡
⎣∑

j≥J

∑
k

dl
j,kψj,k

(
i

T

)⎤
⎦ Xti−l

is the error due to the truncation in the resolution level J − 1. In practice, one usually chooses J
searching from all the available resolution levels.

If we have p additional observations Xti , i = 0, −1, . . . , −p + 1, which can be used as initial
values, then the model (7) can be represented in matrix form as

X = �D + s + ε, (8)

where

X = (Xt1 , Xt2 , . . . , XtT )
′, s = (st1 , st2 , . . . , stT )

′, ε = (εt1 , εt2 , . . . , εtT )
′,

D = (d1
−1,0, d1

0,0, . . . , d1
�,0, d1

�,1, . . . , d1
�,2�−1, . . . , dp

−1,0, dp
0,0, . . . , dp

�,0, dp
�,1, . . . , dp

�,2�−1)
′,
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Journal of Applied Statistics 5

with � = J − 1, and the transpose of the vector a is denoted by a′. Also, consider the matrix

� = (�1
...�2

... . . .
...�p), where

� l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ−1,0

(
1

T

)
Xt1−l ψ0,0

(
1

T

)
Xt1−l . . . ψ�,2�−1

(
1

T

)
Xt1−l

ψ−1,0

(
2

T

)
Xt2−l ψ0,0

(
2

T

)
Xt2−l . . . ψ�,2�−1

(
2

T

)
Xt2−l

...
...

. . .
...

ψ−1,0

(
T − 1

T

)
XtT−1−l ψ0,0

(
T − 1

T

)
XtT−1−l . . . ψ�,2�−1

(
T − 1

T

)
XtT−1−l

ψ−1,0

(
T

T

)
XtT−l ψ0,0

(
T

T

)
XtT−l . . . ψ�,2�−1

(
T

T

)
XtT−l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for l = 1, 2, . . . , p.
In model (8), the wavelet coefficients are now the parameters of interest. The ordinary least-

squares estimator of D is given by

D̂ = (� ′�)−1� ′X

= (� ′�)−1� ′(�D + s + ε)

= (� ′�)−1(� ′�)D + (� ′�)−1� ′s + (� ′�)−1� ′ε

= D + (� ′�)−1� ′s + (� ′�)−1� ′ε

= D + T1 + T2,

where � ′ is the transpose of � and the term T1 represents the bias due to the truncation in the
resolution level J − 1. Hence, from

D̂ = (d̂1
−1,0, d̂1

0,0, . . . , d̂1
�,0, d̂1

�,1, . . . , d̂1
�,2�−1, . . . , d̂p

−1,0, d̂p
0,0, . . . , d̂p

�,0, d̂p
�,1, . . . , d̂p

�,2�−1)
′

we can estimate each value gl(i/T) = fl(ti), and consequently every observation Xti through

X̂ti =
p∑

l=1

⎡
⎣ J−1∑

j=−1

2j−1∑
k=0

d̂l
j,kψj,k

(
i

T

)⎤
⎦ Xti−l =

p∑
l=1

ĝl

(
i

T

)
Xti−l =

p∑
l=1

f̂l(ti)Xti−l , (9)

i = 1, . . . , T . The error variance can be estimated as the sample variance of the residuals ε̂ti =
Xti − X̂ti .

4. Some theoretical properties

Consider the model (8) and let D̂ = (� ′�)−1� ′X be the estimator of the coefficients vector D that
gives rise to the predictor X̂ti of Equation (9), and to the residuals ε̂ti = Xti − X̂ti , for i = 1, . . . , T .
In this case, conditional to the observed values X+ = (Xt−p+1 = xt−p+1 , . . . , XtT = xtT ),

(i) the estimator D̂ is biased as

E(D̂|X+) = D + (� ′�)−1� ′s,
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6 G.E. Salcedo et al.

(ii) independent of the resolution level J chosen for truncation, the covariance matrix of D̂ is the
same, such that

Var(D̂|X+) = σ 2(� ′�)−1,

(iii) the expected value of the residuals is equal to

E(ε̂ti |X+) = sti − �i(�
′�)−1� ′s,

(iv) the variance of the residuals is equal to

Var(ε̂ti |X+) = σ 2 − σ 2�i(�
′�)−1� ′

i ,

(v) the expectation of the predicted value X̂ti is equal to

E(X̂ti |X+) = �iD + �i(�
′�)−1� ′s,

(vi) the variance of the predicted value X̂ti is close to the variance of the respective residual so
that

Var(X̂ti |X+) = σ 2 − Var(ε̂ti |X+),

where �i is the vector formed by the line i of the matrix �, for i = 1, . . . , T . These items are
proved by simple linear algebra.

Notice that, for fixed T , these properties are not as good as we usually desire. In fact, the
biases of model (8), cited at (i), (iii) and (v) can be substantial with small samples, and the
analyst must consider this in practice, when searching for the most appropriate level J , from
all the available resolution levels. However, under some assumptions on the functions gl(·), the
asymptotic properties are better than the finite sample properties. To see this, note that the functions
gl(·) lie in the set

F (l) =
⎧⎨
⎩f (t) : f (t) =

2j0 −1∑
k=0

cl
j0,kφj0,k(t) +

∞∑
j=j0

2j−1∑
k=0

dl
j,kψj,k(t)

⎫⎬
⎭ ,

where

sup
k

|cl
j0,k| < ∞,

and ⎛
⎝ ∞∑

j=j0

⎡
⎣2jslpl

2j−1∑
k=0

|dl
j,k|pl

⎤
⎦

ql/pl
⎞
⎠

1/ql

< ∞,

with sl = rl + 1
2 − 1/pl, for some fixed j0 ∈ Z and coefficients cl

j0,k and dl
j,k , where l =

1, . . . , p; k = 0, . . . , 2j − 1, and j ≥ j0. The class F (l) is closely related to Besov classes with
the same parameters rl, pl and ql, where rl ≥ 1 denotes the degree of smoothing and pl, ql specify
the norm to measure the smoothness, with 1 ≤ pl, ql ≤ ∞ (see [11]).

To ensure sufficient regularity, assume also that s̃l > 1, where s̃l = rl + 1
2 − 1/ min{pl, 2}, so

that (see [11,13])

sup
gl∈F (l)

⎛
⎝ ∞∑

j=J

2j−1∑
k=0

|dl
j,k|2

⎞
⎠ = O(2−2Js̃l ).
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Journal of Applied Statistics 7

In this case, if J is chosen such that 2−2Js̃l = O(T−2rl/(2rl+1)) (which according to Dahlhaus et al.
[11] holds when 2J−1 ≤ T 1/2 ≤ 2J ), then the loss due to truncation is also of order T−2rl/(2rl+1).
Thus, the term T1 is such that

‖T1‖2 = ‖(� ′�)−1� ′s‖2 = E1/2(|(� ′�)−1� ′s|2)
= Op((2

−J min{s̃l} + T−1/22−J min{rl−1/2−1/(2pl)})
√

log(T))

= Op(T
−1/2−τ(J)),

for some τ(J) > 0. Consequently,
√

T‖T1‖2 = Op(T−τ(J)) = op(1), and the estimator D̂ enjoys
some desired asymptotic properties such as unbiasedness.

In order to achieve good asymptotic properties, we have roughly assumed that the func-
tion gl ∈ Brl

pl ,ql
, the cited Besov functional class with parameters rl, pl and ql, where rl >

1 + 1/ min{pl, 2} − 1
2 , for l = 1, . . . , p. Although we could prefer assumptions on the functions f

and H or H−1, the assumptions made on gl are sufficient to guarantee good asymptotic results on
a wide range of function classes for f and H as well, for practical purposes. To see this, first notice
that, since Brl

pl ,ql
⊂ Brl

pl ,∞, then gl ∈ Brl
pl ,∞. If we also assume that rl > 1 + 1/pl and that H−1 has a

local Lipschitz behavior, i.e. H−1 ∈ Brl
pl ,q ∩ L∞, for any 1 ≤ q ≤ ∞, where L∞ denotes the class

of Lipschitz functions, then our assumptions imply that f belongs to a locally Sobolev class of
functions that contains all the locally Besov functional classes with parameters rl, pl and q [1].
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Figure 1. Simulation results for T = 32 and a constant function. (a) Theoretical function (dashed), estimated
mean function (filled) and the intervals of one standard deviation (dotted). (b) Example of X values (circles)
and respective reconstructed values (lines). (c) Simulated and reconstructed X values, using g and its estimate,
respectively, in Equation (6), for the example of (b). (d) Residual correlation check for the example of (b)
using the mean absolute deviation (std. dev.) from zero of the wavelet coefficients at each resolution level j
177 × 177 mm.
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8 G.E. Salcedo et al.

5. Simulation results

In this section we present some simulation results to evaluate the performance of the estimation
procedure for irregular series fitted by the proposed model. In order to do this, we have studied
the proposed time-varying irregular autoregressive model of known orders p = 1 and p = 2.

The simulations were done in the R language using the Wavethresh package [19].

5.1 The design

For models of order p = 1, we have generated 1000 irregular time series of sample length T = 32
from a stationary process for the constant function f1(t) = 0.78, as well as from a time-varying
process with f1(t) = f (t) + 0.1 if 0 < t ≤ T/4 or 3T/4 < t ≤ T , and f1(t) = −0.25 otherwise
with f (t) = −0.15 cos(2π t/T) − 0.35.

For the irregular autoregressive models of order p = 2, we have generated 1000 irregular time
series, using two different pairs of functional parameters with T = 128. The first pair of functions
is given by f1(t) = 0.35 and f2(t) = 1

3 cos(2π t/T) + 0.35, and the second pair of functions is
given by f1(t) = 1

3 sin(2π t/T) + 0.35 and f2(t) = 1
3 cos(2π t/T) + 0.35.

From each generated time series and for all values of ti, i = 1, 2, . . . , T , we have estimated
the theoretical autoregressive functions fl(ti), l = 1, 2, the estimated values (used to build the
fitted series)

X̂ti = f̂1(ti)Xti−1 + f̂2(ti)Xti−2
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Figure 2. Simulation results for T = 32 and a time-varying function. (a) Theoretical function (dashed),
estimated mean function (filled) and the intervals of one standard deviation (dotted). (b) Example of X
values (circles) and respective reconstructed values (lines). (c) Simulated and reconstructed X values, using
g and its estimate, respectively, in Equation (6), for the example of (b). (d) Residual correlation check for
the example of (b) using the mean absolute deviation (std. dev.) from zero of the wavelet coefficients at each
resolution level j 177 × 177 mm.
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and the reconstructed values

X̃ti = f̂1(ti)Xti−1 + f̂2(ti)Xti−2 + εti .

Notice that in the reconstructed values the error terms used are the simulated ones; obviously,
when p = 1, f2(ti) = 0 for all ti values and was not estimated.

The irregular times ti were fixed at the beginning of the simulation where t1 = 1 and the fixed
intervals δi = ti+1 − ti previously obtained as δi ∼ U(1, 5), for i = 1, 2, . . . , T − 1.

For the stationary case we have used the Haar wavelet, denoted by DB1, while for the time-
varying models we have used Daublets with eight vanishing moments, denoted here by DB8
(see [12]).

Remark The presence of correlated noise manifests itself as a dependence of the standard devi-
ations σj of the wavelet coefficients on the level j (see [14] for details). Figures 1(d) to 4(d) show
σj (as estimated by the median absolute deviation from zero) versus j, along with 95% confi-
dence intervals (CIs) obtained by a boostrapping procedure. We have just used the three highest
resolution levels. The fact that all the CIs overlap suggests that the residuals are uncorrelated as
expected from a reasonable estimation procedure. Although not shown, the CIs do not overlap for
the original series.
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Figure 3. Simulation results for T = 128 with the constant and cosine functions. (a) Theoretical function
(dashed), estimated mean function (filled) and the intervals of one standard deviation (dotted). (b) Example
of X values (circles) and respective reconstructed values (lines). (c) Simulated and reconstructed X values,
using g and its estimate, respectively, in Equation (6), for the example of (b). (d) Residual correlation check
for the example of (b) using the mean absolute deviation (std. dev.) from zero of the wavelet coefficients at
each resolution level j 177 × 177 mm.
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Figure 4. Simulation results for T = 128 with the sine and cosine functions. (a) Theoretical function (dashed),
estimated mean function (filled) and the intervals of one standard deviation (dotted). (b) Example of X values
(circles) and respective reconstructed values (lines). (c) Simulated and reconstructed X values, using g and
its estimate, respectively, in Equation (6), for the example of (b). (d) Residual correlation check for the
example of (b) using the mean absolute deviation (std. dev.) from zero of the wavelet coefficients at each
resolution level j 177 × 177 mm.

5.2 Results

Figures 1 and 2 show the results for the simulated series from the stationary and non-stationary
irregular autoregressive processes of order p = 1 for T = 32, respectively. In these cases, we
have used J = 1 because, compared to J = 2, 3, this value resulted in better adjusted curves with
narrow intervals in figures (a) and less in scattered figures (c). Figures (a) contain the theoretical
function (dashed curve), the mean (at each point ti) of the 1000 estimated functions (filled curve)
and the interval of one standard deviation (dotted curves). Figures (b) contain one example of
the simulated irregular series (circles) and the corresponding reconstructed series (lines). Figures
(c) show the validation plot containing the simulated versus the reconstructed values X̃ti for the
example of (b). Figures (d) are residual correlation check plots for the example of (b) using the
mean absolute deviation from zero of the wavelet coefficients at each resolution level j.

Figures 3 and 4 show the results for the simulated series from the non-stationary irregular
autoregressive processes of order p = 2 for T = 128. In these cases, we have used J = 2 because
compared to J = 3, 4, this value resulted in better adjusted curves with narrow intervals in figures
(a) and (b) and correlated residuals in figures (d). Figures (a) and (b) contain the theoretical
function (dashed curve), the mean (at each point ti) of the 1000 estimated functions (filled curve)
and the interval of one standard deviation (dotted curves) for f1(t) and f2(t) functions, respectively.
Figures (c) contain one example of the simulated irregular series (circles) and the corresponding
reconstructed series (lines). Figures (d) are residual correlation check plots for the example of (c)
using the mean absolute deviation from zero of the wavelet coefficients at each resolution level j.
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In general, we consider that the performance of the estimation procedure for finite samples
is good because, in each case, both the simulated and the reconstructed series match each other
reasonably well even for small sample size. Since in figures (d) the CIs overlap we can conclude
that the residuals are uncorrelated and we have adequately eliminated the temporal dependence
through the model. As expected, the estimation is better for larger values of T .

6. Application

We have applied the proposed model to irregular time series of 32 points of silicates and nitrites
that were sampled from the waters of the Beagle Channel in Argentina. This channel separates
the Tierra del Fuego from the islands in its south and monitoring its water quality is important,
for instance, to farmers in this area. The data were collected from March 2005 to December 2006
at irregularly spaced dates due to weather and operational conditions.

Since the sample size is small, the times are unequally spaced and the series seems to exhibit a
non-stationary behavior, we have tried to fit a time-varying irregular autoregressive model of order
p = 1 to these data. The claimed non-stationarity behavior can be seen in Figures 5(b) and 6(b)
for the silicates and nitrites series, respectively.

In order to choose the specific wavelets for the model, we have tried Daublets with N = 6,8
and 10 vanishing moments. In each case we have chosen the wavelet with the smallest residual
mean square errors (MSE) to proceed with the analysis. We have decided to use J = 2 in this
application after experimenting with some other values.
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Figure 5. Results of fitting the time-varying irregular autoregressive model of order p = 1 to the water
silicates series in the Beagle Channel from March 2005 to December 2006. (a) Estimated AR(1) functional
parameter with DB8. (b) Observed (solid lines) and fitted time series (dashed lines). (c) Irregular residual
series. (d) Residual correlation check of the fitted model 177 × 177 mm.
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Figure 6. Results of fitting the time-varying irregular autoregressive model of order p = 1 to the water nitrites
series in the Beagle Channel from March 2005 to December 2006. (a) Estimated AR(1) functional parameter
with DB8. (b) Observed (solid lines) and fitted time series (dashed lines). (c) Irregular residual series. (d)
Residual correlation check of the fitted model 189 × 181 mm.

In Figure 5(a) we show the estimated functional parameter for the model fitted to the sil-
icates series, using the Daublet with N = 8 (DB8). Observed (dark lines) and fitted (dashed
lines) series are shown in Figure 5(b). We have obtained an MSE = 0.9389 for the resid-
ual series in Figure 5(c) and p-values greater than 0.10 for different normality tests, after
standardization (Kolmogorov–Smirnov, 0.4920; Anderson–Darling, 0.1560; Shapiro–Wilks,
0.5183; Jarque–Bera, 0.2753). Figure 5(d) shows that this model removes the time series
dependence.

For the nitrites series, in Figure 6(a) we show the estimated functional parameter also using the
Daublet DB8. Observed (dark lines) and fitted (dashed lines) series are shown in Figure 6(b). We
have obtained an MSE = 0.0088 for the residual series in Figure 6(c). This model removes the
time series dependence, see Figure 6(d), and generates normal residuals with p-values greater than
0.10 for different normality tests, after standardization (Kolmogorov–Smirnov, 0.9733;Anderson–
Darling, 0.5356; Shapiro–Wilks, 0.3921; Jarque–Bera, 0.7672).

7. Conclusions

In this paper, we have proposed a tv-AR model for irregularly spaced non-stationary time series,
similar to wavelet models for locally stationary processes. Irregularity and non-stationarity are
included in the model through the autoregressive functional parameters. Estimation is done by
least squares of the coefficients of a wavelet expansion of the functional parameters. The model
performance in finite samples and its usefulness are illustrated through some simulations and an
application to two time series of data collected from a shipping channel.
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