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Abstract 

In this work we analyze the correlation of the 

appearing T-wave alternans (TWA) with the shape 

(range) of the multifractal spectra of the ECG signals 

obtained with wavelet leaders based methods. A non-null 

correlation between the TWA occurring and lesser values 

for the Hölder exponent of maximum dimension has been 

observed, in agreement with the idea that the projection 

of TWA must have a non-despicable contribution in the 

higher scales of the multiresolution analysis of the signal. 

We are developing new algorithms capable to deal with 

non-concave multifractal spectra based in wavelet 

leaders projections, instead of existing methods that only 

gives concave spectra. These new algorithms will give a 

finer resolution of Hölder component of the signal and 

we hope that this richer information about the sharpness 

of the signal will allow better estimations of the 

magnitude of TWA and a closer relation between 

multifractal spectra and TWA occurring.  

1. Introduction 

The empirical evidence suggests that microvolt TWA 
tests are good predictors of the risk of sudden cardiac 
death (SCD). An interesting subject of study is the 
relation between these patterns and the analysis of the 
regularity of the signals of ECG performed with wavelet 
leaders. Sudden cardiac death (SCD) is one of the most 
important public health problems in the world today and 
is the leading cause of mortality in developing countries. 
Serious ventricular arrhythmias are the most common 
mechanism responsible for SCD. Thus, in order to 
prevent SCD, it is crucial to have effective diagnostic 

tools to identify patients at risk for these arrhythmias. 
Unfortunately, despite multiple trials in acute myocardial 
infarction (AMI) and congestive heart failure, our 
understanding of how to identify  those patients at highest 
risk for SCD that seem to be related to the presence of the 
T-waves alternans and how to best prevent this 
devastating occurrence remains incomplete.  

The study of the presence of T-waves alternans in an 
ECG seems to be strongly related to the distribution, 
density and dimension of the sets of the points of 

different regularity Hölder in terms of the dimension of 
correlation, and the promissory perspectives to warn the 
presence of the T-wave alternans from the Hölder 
exponents accumulated. 

1.1. Hölder exponents and multifractal  

spectra  

     The pointwise Hölder exponents provide a natural 
enough way of quantifying the regularity of a function by 
means of a positive parameter that measures the major or 
minor ruggedness of the graph for every point. A function 

f belongs to )( 0xCα  for 0≥α , if ∃  P a polynomial of 

degree less than or equal to [ ]α  ( the integer part of α ), 

and constants: 00 >> δandC  such that if 

( )δδ +−∈ 00 , xxx  then α
00 .)()( xxCxxPxf −≤−− . So 

when 1<α  we obtain α
00 .)()( xxCxfxf −≤−  for x in 

some neighbourhood of 0x . Of this it is immediate that if 

)( 0xCf α∈  then )( 0xCf εα −∈ , for all 0≥ε . Now we 

define the Hölder exponent of f in 0x  as 

{ })(:sup)( 00 xCfxH f

αα ∈= . So we have that 

)( 0xCf α∈  for all )( 0xH f<α  and )( 0xCf α∉  for 

)( 0xH f>α . For a continuous function in all points, we 

have that )( 0xH f  define a function with values in 

{ }+∞∪ℜ  which say to us how the regularity of a function 
changes point to point. The Hölder exponents can change 
point to point giving very complex structures for the 
given signal. Then, the natural description of these 
structures is the distribution of the exponents in the range 
of regularity. More precisely, we can consider the 
dimensions of the point sets that have the same Hölder 
exponent. Since these sets in general have Lebesgue 
measure zero, the fractal dimensions are  natural tools. 
The Multifractal Spectrum is ( ){ }00 :dim)( xHxd fH=α  

defined as the Hausdorff dimension ( Hdim ) of points set 

0x  having pointwise Hölder exponent α=)( 0xH f . 
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2. Methods 

2.1. The wavelet leaders method [1] 

The procedure consists of seven steps: 
1. For any couple NxZkj ∈),( , let 

[ ]jj

kj kkI −− += 2)1(,2, . Then, if Rx ∈ , 1≥∀j , !∃  

integer xjk ,  such that )(
,, xIIx jkj xj

=∈  and let a 

wavelet )(RC ∞∈ψ  a function in the Schwartz class, 

constructed in (Meyer, (1990)), then the set of functions 

}{
ZxZkj

j

kj k
∈

−•=
),(, 2(ψψ  forms an orthogonal 

wavelet basis (owb) of )(2 RL . Also, let )(RCf ε∈  

for some 0>ε , and write it in the owb 

∑
∈

=
sN

Zkj

kjkjcf
,

,, ψ where kjc ,  is the wavelet coefficient 

of f  defined by:  

kjc , := dtttffc kj

j

kj )()(2)( ,, ∫= ψ . 

2. For any couple NxZkj ∈),( , let us introduce the 

Wavelet Leader kjL ,  associated with f  and 

ψ : ''

,
''

,
2,´

, sup
kj

Ikjj
kj cL

kj
j ∈≥ −

= . 

3. Then, with any point Rx ∈  and any scale 0≥j  

can be associated the coefficient: 
1
,0

,

sup)(
≤−

=
xjkk

kjj LxL . 

4. A theorem about the pointwise Hölder exponent 
proved in Jaffard (2004) affirms that: 

)2log(

))(log(
inflim)(

0

0 j

j

j
f

xL
xh

−+∞→
= . 

5. Recall that the Legendre Transform of a function 
)(: qRq ϕϕ →∈ is the mapping 

 { }∞−∪∈→∈ ∗∗ RhRh )(: ϕϕ  defined by 

))((inf)( qqhh
Rq

ϕϕ −=
∈

∗ . 

6. For any function )(2 RLf ∈  decomposed in the 

before equation, we can introduce the scaling function 

)(: pRp ff ξξ →∈  associated with f as follow: 

∑
∈

∗

+∞→

−
=

Zk

p

kj
j

f L
j

p ,log
1

inflim)(ξ where 碓 means 

that the sum is taken over the k  such that kjL ,  does not   

vanish. So, for each 1≥j  the function 

∑
∈

∗
→

Zk

p

kjLp , is log-convex and non-increasing 

when j is large enough, then the mapping fξ  is concave 

and non-decreasing on R  (as limit of the infimum of 
non-decreasing concave functions). 

7. This kind of free energy functions are naturally 
introduced to formulate a multifractal formalism for 
functions based on the representation as wavelet series 
(see Jaffard, (1997)). Frisch and Parisi first proposed a 
formula (that links multifractal spectrum of a function 
f with some averaged quantities derived from f ): 

generally called the Frisch-Parisi’s conjecture, that can be 
generalized and reformulated (see Frisch and Parisi, 

(1985)), if we call )(hd f  to the Hausdorff dimension 

of set { }hxhxE f

f

h == )(:: , then:  

)())((inf)(
0

hpphhd ff
p

f

∗

>
=−= ηη where the 

mapping { }∞−∪→∈ RRpf :η  is a suitable free 

energy function associated with f . Then, (Jaffard, 

(2004)) established that: the scaling function fξ  depends 

only on f, NOT on ψ , and if f  satisfies the multifractal 

formalism at the exponent 0>h , ff ξη = . Now we 

define the Hausdorff Multifractal Spectrum of f  by 

)()()dim()(: hEhdhd f

f

hff

∗==→ ξ . 

Hölder estimation by means of the wavelet leaders: 

The pointwise Hölder exponents of a function can be 
estimated studying the decay of the wavelet leaders in the 
cone of influence of every point.  

Actually, it is well known the characterization of 
spaces of functions by means of the wavelet coefficients 
of f : 

)( 0xCf α∈ : αα ).21.(2. 0, kxCc jj

kj −+≤ −    

for some constant C , and with a weaker reciprocal (there 
appears a factor of logarithmic decay involved). In this 
line, under general enough hypothesis it is possible to 
obtain the pointwise Hölder exponent if one assumes that 

essentially: 
jxH

kj
fKc

)(

,
02.

−
≈ and taking  2log , we 

obtain: )(
log

lim 0

,2
xH

j

c

f

kj

j
=

−+∞→

. The above mentioned 

procedure – resides of specifies presumptions that its 
application needs on a discreet series – suffers from 
disadvantages when the signal shows oscillating 
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singularities (v. g. chirps). When a time-frequency 
singularity lies on small intervals, great values of K  are 
necessary, and then they cannot be scorned even at the 
maximum scale that the discretization admits. This 
cannot be avoided since the constants involve (after 
fixing a scale) both C  and the factor 

α).21( 0 kxj −+ , and this introduces instabilities in 

these estimations. On the other hand, by considering only 
the wavelet leaders, the bounds are unified in all the 
intervals of the cone of influence – that alludes also to the 

contiguous intervals in every scale close to 0x -, and then 

the perturbations introduced by the oscillations decrease. 
This allows to formulate the approximation of the law of 
decay without the factor that involves the translations: 

j

kj KL α−≈ 2., . Then we do an extrapolation to the 

limit to estimate: 
j

L
xH

kj

j
f

−
=

+∞→

,2

0

log
lim)( . This 

provides a faithful estimation of the pointwise Hölder 
exponents that does not produce great variations, for 
example, in the presence of chirps of the signal. 

2.2. Gradient modulus wavelet leaders 

projection method 

Turiel, A. et al (2006) [2] use an histogram to estimate 
the density  of the Hölder exponents  from the values for 
the smallest scale, by considering the coefficients: 

kjc , := dtttffc kj

j

kj )()(2)( ,, ∫= ψ  

for 02 0
0 ≈= − jε (Gradient Modulus Wavelet 

Projection). Our proposal is to estimate with a direct 
method, similar to the above mentioned (Turiel), based 

on the behavior of the wavelet leaders kjL ,  instead of the 

kjc , . In this way the stability in the face of to oscillating 

singularities provided by the wavelet leaders is preserved; 
moreover we also have the freedom of the Turiel method 
(without the Legendre transform) to about the concavity 
or non-concavity of the multifractal spectrum. Then we 
will use the abbreviation: GMWLP (Gradient Modulus 

Wavelet Leaders Projection), for the algorithm of direct 
estimation of the multifractal spectrum with wavelet 
leaders, which four steps we resume as follows: 

1. We estimate the Hölder exponents extrapolating at 

limit: 0)
2

(),...,
2

(),
2

(,
)(log2 2

→=
N

NNN
Nj , and we 

obtain  
j

L
xh

kj

j
f

−
=

+∞→

,2

0

log
lim)( . 

2. We estimate the density )(αρ : Theoretically 

)(αρ  is a density function, that is the derivative of the 

distribution (probability) function F , such that 

∫ ∞−
=≤=

α
αα dttpxPF )()()( , and then:  

ε

εαεα

α

α

αα

α
α

ε

α

2

)()(
lim

))(())(())((
)(

0

−−+≤
=

≤
===

→

∞−∫ PxP

d

xPd

d

dttpd

d

Fd
p

 

  So we take a partition as fine as possible of 

[ ]máxmïn αα ,  and we count the proportion of the points 

of the series which Hölder exponent lies in each interval: 








 +≤≤−








≈
serietheofspototal

xHwithspo
p

f

int#

)(int#

2

1
)(

εαεα

ε
α  

3. We estimate the dimension of each α  (of the 

partition): 
)log(

)
)(

)(
log(

1lim)dim( 1

0 r
E

r

αρ

αρ

α −=
→

, where 
1αE  is 

the set of maximum density and r  is the ratio of the 
intervals of the mesh: Frequently the series has full 

support (dimension 1), and then the set 
1αE of major 

density must also has dimension 1. 
4. On the other hand, for little scales ( )0≈r  we 

approximate:  
)

)(

)(
(log)dim(

)log(

)
)(

)(
log(

1)dim(
1

1

1 αρ

αραρ

αρ

αα rE
r

E −=−≈
 

and consequently,  
)dim(

)dim(
1

1)(

)(
α

α

αρ

αρ
E

E

r

r
≈  , as one expect 

for any reasonable definition of dimension Though the 
GMWLP is preferable on the GMWP, both methods only 
differ in the way of estimating the pointwise Hölder 
exponents, and then they follow a common scheme: 

Discretization of the interval: 

[ ] máxnnmïnmáxmïn αααααααα == − ,,.......,,:, 110 . 

Approximate evaluation of the density function of the 
pointwise Hölder exponents in the nodes of the 

partition: )( iαρ . Estimation of the dimensions of the 

sets of each pointwise Hölder exponent: )dim(
i

Eα . 

3. Results 

The results of the five entries of the TWA-Challenge 
of PhysioNet confirms the fact that there are a strong 
correlation between the difference of the multifractal 
spectra and their concave hulls with a high level of 
significance, but it is not perhaps sufficient for being the 
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basis of a method of systematic detection of TWA. 
Notwithstanding it is an interesting subject of study the 
causes of this correlation. 
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Figure 1. An example of Electrocardiogram series. 
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Figure 2. Multifractal spectrum and its concave hull 
referred to series of figure 1.  

3.1. Computational complexity of  

wavelets based methods 

The most expensive step is the computation of wavelet 
coefficients requiring an order of about K.Log(N).N  

products where K is a proportional constant from the 
number of nodes necessaries for implementing the 
mother wavelet. With exception of when there are 
reasons to expect high regularity it is sufficient to take 
(for example, in our implementation) a wavelet of 
compact support of the fourth order: We use the near-
symmetric Daubechies wavelet:   Sym4, with K = 4.4 - 1 
= 15. This step only is needed once. Other usual methods 
for computing the multifractal spectrum (not wavelet 

based) require typically about )O(N2  operations. 

4. Discussion and conclusions 

The patterns of many physiological processes exhibit a 
strong correlation with the regularity of the signals of 
measurements related with them and consequently with 
their multifractal spectra. Some examples are the series of 
EEG before and during epileptic crisis of brain absences, 
series of human gait in healthy and ill persons, heart-
interbeat signals in human races [3,4], etc. This suggested 
us the possibility of a relation between some 
characteristic of ECGs –normal and pathological- and 
their spectra, and specifically, the detection of T-wave 
alternans, because the relation of time-scale analysis and 
frequency spectrum (where TWA should be reflected) 
and Hölder regularity –above mentioned-. An interesting 
question is the use of GMWLP method that can detect 
non-concave spectra. Such non-concavity may be 
relevant in processes with superposition of contributions 
of many sources, and we thought that it can have 
influence in this problem. To consider this last item we 
compute the norm in L1 of the difference between the 
multifractal spectra computed with the GMWLP, and 
their concave hull. Also we want to mention that the 
results of the entry indicate that the non-concavity of the 
spectra, alone, presents a higher correlation than the 
concave hull of them (computed with the WL), and also 
higher than a weighted average of the index of non-
concavity and the mean value of the Hölder exponents. 
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