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Abstract
The multifractal spectrum has been revealed recently as a very useful tool for the analysis of
signals, especially in those coming from the measurement of physical variables in chaotic or
critical systems with multifractal structure, and in which many phenomena interact in multiple
scales. In addition, in this context, the presence of singularities of rapid oscillation, chirps,
is frequently difficult to handle. In this work we propose a way for using “wavelet leaders”,
avoiding the Legendre transform, for developing a new method capable of recognizing if a non-
concave multifractal spectrum arises in a given signal, and is also capable of obtaining it in the
case in which oscillating singularities appear, and so it succeeds where any other method fails.

Keywords : Multifractal Formalisms; Non-Concave Spectra; Chirps; Wavelet Leaders; GMWLP.

1. INTRODUCTION

Multifractal analysis emerged in the mid 80’s
with the works of Mandelbrot,1 Parisi, Frisch,

Arneodo and others in the context of modelling fully
developed turbulence.2 Since then it has arisen as a
relevant tool for the study and characterization of
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many natural series. Multifractals have been used
to describe phenomena from physics,3 economics,4

physiology,5–7 meteorology8 and many other
fields.9,10

Basically it consists of the analysis of the dimen-
sion of the sets of each degree of pointwise Hölder
regularity, notwithstanding some other notions of
regularity were investigated (local Hölder regular-
ity, instead of pointwise, p-exponent, and others).
Additionally which type of fractal dimension must
be taken is a delicate matter related with the
type, strong or weak, of the singularities under
consideration.

Another question to be considered is the recogni-
tion of the Hölder exponents when the signals have
oscillating singularities, like chirps, in addition to
the cusp singularities that are easier to handle.

Most of the usual methods11 for computing mul-
tifractal spectra are unstable in the face of the
presence of chirps, sometimes because the impos-
sibility of obtaining reliable estimates of the trends
when rapid oscillation occurs and some other times
because the dispersion of the maxima lines of
wavelet coefficients. Jaffard’s method of Wavelet
Leaders (“WL”) was until today, perhaps the only
one that is not affected seriously by the presence of
chirps.

Frequently another misunderstood matter is the
possibility of the non-concavity of the multifrac-
tal spectra, and that is perhaps a nice problem
to be studied. The pointwise estimation of Hölder
exponents requires some kind of limit process. The
majority of the methods avoids the problem about
the numerical instabilities of this process by means
of some average quantities related to a scaling func-
tion from certain p-norms and by obtaining the
spectrum provided by the Legendre transform of
that scaling function. But this procedure imposes
the concavity feature for the spectra so obtained,
reinforcing the prejudice mentioned in some works
that the concavity might be inherent for natural
series. On the other hand, the results of some assays
that we did with series from EEG of epileptic crisis
of brain absences suggest the idea that non-concave
spectra arise naturally in some contexts.12 Actually,
if we take in consideration that the series of each
channel of EEG proceed from the electrical activity
of great groups of neurons and, because the tem-
poral and spatial evolution of the epileptic crisis,
many of these neurons may have a kind of multi-
fractal behavior, and many others may have another
different behavior notably displaced from the first

one. It is not surprising that non-concave spectra
appears. And, of course, it is quite credible that
many physical systems would exhibit non-concave
spectra if we were able to detect them.

How can we detect them if the methods them-
selves impose the concavity? A few algorithms
based in density estimation of Hölder exponents,
the most successful of them is perhaps the Gradi-
ent Modulus Wavelet Projection (“GMWP”, Turiel
et al.13), may show non-concave multifractal spec-
tra. The latter is probably preferable over many
others because of the greater stability of the esti-
mation provided by the wavelet coefficients. But
these methods suffer the above mentioned problems
if there are oscillating singularities.

How to take advantage of the success of each
method?

The natural response seems to be replacing the
wavelet coefficients by the wavelet leaders and not
obtaining the spectra by means the Legendre Trans-
form. Instead, we compute the dimension of Hölder
exponents sets from the densities of them with the
GMWP. So we are able to preserve the possibility
of having non-concave spectra, in disagreement with
the methods that use Legendre Transform and can-
not calculate them. On the other hand, in this way,
the stability in presence of chirps of the signals is
preserved by the leaders, in opposition to GMWP.
We called this hybrid method: “GMWLP” (Gradi-
ent Modulus Wavelet Leaders Projection), and in
this work, we compare its performance against the
WL and the GMWP in many natural and synthetic
series with and without chirps and with concave and
non-concave spectra.

2. THEORETICAL FOUNDATIONS

2.1. Multifractality and Hölder
Exponents

The starting point to analyze irregular signals is the
Hölder regularity, used to calculate the singularity
spectrum. This spectrum describes fractal properties
of the given signal. Let us give a brief overview of
these concepts.14–16

Let g(x) be a continuous function. For any non-
integer α > 0, g(x) ∈ Cα

x0
, the pointwise Lipschitz

class, if there exists a constant c > 0 such that close
to the point x0

|g(x) − P (x− x0)| ≤ c|x− x0|α,
where P is a polynomial of degree less than or equal
to the integer part of α. The pointwise exponent
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Hölder of g at x0, hg(x0) is the supremum of α,
such that g ∈ Cα

x0
.

Cusp singularities are related to non-integer
exponents and the singular points may be isolated
or may accumulate in dense sets. Moreover, in the
last case the Hölder exponents can vary from point
to point, providing very complex structures for the
respective signal. Then, the natural description of
these structures is the distribution of the exponents
in the regularity range. With more precision, we
can consider measures of the sets of points having
the same Hölder exponent. Since in general these
sets have zero Lebesgue measure, although being
uncountable sets, fractal measures are the appro-
priate tool to deal with them.

The Hölder singularity spectrum f(α) is
defined17 as the Hausdorff dimension of the set of
points x0 having the exponent hg(x0) = α. We
must remark that in practice, this dimension is
replaced by others that are analogous, such as the
box-dimension, more malleable for the numerical
applications.14

Then, the main problem is to estimate the sin-
gularity spectrum from the data values. Since the
numerical application of the mathematical defini-
tion is almost impossible, some additional hypoth-
esis or a more specific framework are needed.18

In this way, most empirical methods are based
on the so-called multifractal formalism.19 This
essentially consists of a proposed structure func-
tion, Fq(l) providing global estimations about the
regularity of the signal as a function of a semi-norm
parameter q and the scale paramater l, supposedly
related with the pointwise behavior in this way

f(α) = inf
q

(qα− h(q) + 1)

for a concave function h, assuming that

Fq(l) ∼ |l|h(q).

An illustrative example for the structure function
is given by Ref. 4

Fq(l) =
∫

R
|g(x + l) − g(x)|q dx.

Multifractal formalisms are open for a broad fam-
ily of structure functions and related numerical
implementations. Let’s observe that the above given
formula can be discretized or replaced by other dif-
ference operators. In particular we can replace the
scale parameter l as follows

Fq(s) =
∫

R
|g(s(x+ 1)) − g(sx)|q dx,

then, for τ = h− 1,

f(α) = inf
q

(qα− τ(q))

and the scale operator becomes evident.
We will discuss and revise several alternatives

below. But let us remark that, except for some spe-
cial cases, there is not a theoretical proof for these
empirical methods. In particular local self-similarity
structures seem to be the necessary ingredient for
multifractal formalisms. Beyond these hypotheses
we cannot ensure the validity of the methods based
on the formalism, and multifractal estimation can
be considered as an open problem.16

2.2. The Wavelet Leaders Method

Until recently the principal Wavelet based method
for estimating the Multifractal Spectrum was the
Wavelet Transform Modulo Maxima (WTMM).20

This was usually preferred over the Wavelet Inte-
gral Transform Method and also over the methods
based in the q-moduli of continuity, a predecessor
of the MFDFA, because it exhibits better numer-
ical properties (see Bacry et al.,21 Jaffard15) and
because, at least in the cases of self-similarity and
statistical self-similarity, we can theoretically ensure
that the wavelet-based Multifractal Formalism gives
the correct spectrum. Moreover the WTMM can be
used for signals with a significant fraction of null
values of the series where MF-DFA cannot be used
(see Kantelhardt et al.22). This case is very fre-
quent in monofractal series. Nevertheless the men-
tioned method is not free of criticisms: For series
of fractional Brownian motion the part of the spec-
trum corresponding to the highest regularity, that
obtained from the negative values of q, is under-
estimated (see, e.g. Jaffard et al.23 or Oswiecimka
et al.24). It seems that the source of this trouble
comes from the fact that WTMM actually cap-
tures the weak exponent spectrum, which some-
times coincides with the Hölder exponent. The step
to higher dimensions increases enormously the com-
plexity when working the WTMM with the contin-
uous wavelet transform.

Additionally the application of both methods,
WTMM and MF-DFA, presents difficulties when
the signal has oscillating singularities.

An interesting proposal that overcomes the
majority of the problems of both methods is the
use of the Wavelet Leaders:

Wavelets25 are natural tools in multifractal anal-
ysis for at least three reasons. First, the concept of
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self-similarity is implicit in the construction of the
wavelet basis {Ψj,k} that we define below. Second,
wavelet coefficients provide a time-scale decompo-
sition of the initial function (or signal) f , hence,
scaling properties of a function shall imply scaling
properties of its wavelet coefficients. Finally, the
pointwise Hölder exponent hf (x) of any continu-
ous function f around a point x can be computed
through size estimates of the wavelet coefficients cj,k
associated with f . Thus, they are efficient tools to
analyze local behaviors.26,27

Jaffard28 developed a method for the wavelet
characterization of the pointwise Hölder exponent
and the relationship between Hölder regularity and
local oscillation. He gave a new formulation of this
criterion in terms of local suprema of the wavelet
coefficients that he named Wavelet Leaders, which
paves the way for the new multifractal formalism.
It can be summarized as follows:

For any pair (j, k) ∈ N × Z, Ij,k denotes the
dyadic interval [k2−j , (k + 1)2−j).

Then, if x ∈ R, ∀j ≥ 1, there exists a unique
integer kj,x such that x ∈ Ij,kj,x

.The interval Ij,kj,x

is also denoted Ij(x).
Let a wavelet Ψ ∈ C∞(R) be a function in the

Schwartz class, as constructed in Meyer (1990),29

then the set of functions {Ψj,k = Ψ(2j ·−k)}(j,k)∈Z2

forms an orthogonal wavelet basis (owb) of L2(R).
Also, let f ∈ Cε(R) for some ε > 0, and we write f
in the owb

f =
∑

j,k∈Z

cj,kΨj,k, (1)

where cj,k is the wavelet coefficient of f defined by

cj,k := cj,k(f) = 2j

∫
R
f(t)Ψj,k(t)dt. (2)

For any pair (j, k) ∈ N × Z, let us introduce the
Wavelet Leader Lj,k associated with f and Ψ

Lj,k := sup |cj′ ,k′ |
j′≥j,k′2−j

′∈Ij,k

. (3)

Then, with any point x0 ∈ R and any scale j ≥ 0
can be associated the coefficient

Lj(x0) := supLj,k
|k−kj,x|≤1

. (4)

A theorem about the pointwise Hölder exponent
proved in Jaffard28 affirms that

hf (x0) = lim inf
j→+∞

log(Lj(x0))
log(2−j)

(5)

Recall that the Legendre transform of a function
ϕ : q ∈ R �→ ϕ(q) is the mapping

ϕ∗ : h ∈ R �→ ϕ∗(h)
= inf

q∈R
(qh− ϕ(q)) ∈ R ∪ {−∞}. (6)

For any function f ∈ L2(R) decomposed in
Eq. (1), one can introduce the scaling function ξf
associated with f

ξf : p ∈ R �→ ξf (p)

= lim inf
j→+∞

− j−1 log2

(∑
k∈Z

∗|Lj,k|p
)
, (7)

where ∗ means that the sum is taken over the k
such that |Lj,k| does not vanish. For each j ≥ 1
the function p �→ ∑

k∈Z
∗|Lj,k|p is log-convex and

non-increasing when j is large enough. In that case,
the mapping ξf is concave and non-decreasing on R
(as limit of the infimum of non-decreasing concave
functions).

This kind of free energy function is naturally
introduced in order to formulate a multifractal for-
malism for functions based on the representation
as wavelet series (see Jaffard (2007)).28 Frisch and
Parisi first proposed30 a formula that links the
multifractal spectrum of a function f with some
averaged quantities derived from f . This formula,
generally called Frisch–Parisi’s conjecture, can be
generalized and reformulated.30 If we call df (h) to
the Hausdorff dimension of the set Ef

h := {x :
hf (x) = h}, then

df (h) = inf
p>0

(ph− ηf (p)) = (ηf )∗(h), (8)

where the mapping ηf : p ∈ R �→ R ∪ {−∞} is a
suitable free energy function associated with f .

Then, Jaffard28 establishes that the scaling func-
tion ξf depends only on f , NOT on Ψ, and if f
satisfies the multifractal formalism at the exponent
h > 0, ηf = ξf . Finally, we build the Hausdorff
Multifractal Spectrum of f defined by

df : h �→ df (h) = dim(Ef
h) = (ξf )∗(h). (9)

2.3. Hölder Estimation by Means
Wavelet Leaders

The pointwise Hölder exponents of a function can
be estimated studying the decay of the wavelet
leaders in the cone of influence of every point, i.e.
the set of dyadic intervals Ij(x) and their adjacent
intervals. Actually the characterization of spaces of
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functions by means of the use of the wavelet trans-
form is well known. It can be obtained by the fol-
lowing bounds28,31 for the wavelet coefficients of f ,
if f ∈ Cα(x0)

|cjk| ≤ C2−αj(1 + |2jx0 − k|)α (10)

for some constant C, and with a weaker recipro-
cal (there appears a factor of logarithmic decay
involved). In this line, under general enough
hypotheses it is possible to obtain the pointwise
Hölder exponent if one assumes that

|cjk| ≈ K2−Hf (x0)j

since we obtain: log2 |cjk| ≈ log2K −Hf (x0)j, and
then

lim
j→+∞

log2 |cjk|
−j = Hf (x0).

The above mentioned procedure — besides of the
specifies presumptions that its application needs
on a discreet series — suffers from disadvantages
when the signal shows oscillating singularities (e.g.
chirps). When a time-frequency singularity lies on
small intervals, great values of K are necessary, and
then they cannot be neglected even at the maximum
scale that the discretization admits. This cannot be
avoided since the constants involve (after fixing a
scale) both C and the factor (1 + |2jx0 − k|)α, and
this introduces instabilities in these estimations.

On the other hand, by considering only the
wavelet leaders, the bounds are unified in all the
intervals of the cone of influence — that alludes
also to the contiguous intervals in every scale close
to x0−, and then perturbations introduced by the
oscillations decrease. This allows to formulate the
inequality of the law of decay without the factor
that involves the translations

|Ljk| ≤ C2−αj

(and also there is a reciprocal with a logarithmic
factor analogous to the case of the wavelet coeffi-
cients). Then we do an extrapolation to the limit
to estimate Hf (x0) = limj→+∞

log2 |Ljk|
−j . This pro-

vides a faithful estimation of the pointwise Hölder
exponents that does not produce great variations in
the presence of chirps of the signal.

2.4. Gradient Modulus Wavelet
Leaders Projection Method

This method combines the use of the Wavelet Lead-
ers with an interesting idea of Turiel et al.13 that

essentially consists of estimating the multifractal
spectrum directly from a histogram of the Hölder
exponents deduced by extrapolating the behavior
of the wavelet coefficients, the so called Gradient
Modulus Wavelet Projection (GMWP).

Turiel et al.13 use an histogram to estimate the
density ρ(α) of the Hölder exponents α from the
values for the smallest scale j considering

cj,k := cj,k(f) = 2j

∫
R

f(t)Ψj,k(t)dt,

for ε0 = 2−j0 � 1.

The Ψj,k are not necessarily a base of L2 and they
may have no vanishing moments. The idea of Turiel
is to consider the variation of the projections of the
signal against a family of functions that change its
scale (because his objective is to estimate the α of
the cusp type singularities).

The first observation that arises is the possibility
of improving the estimations by extrapolating to
the limit, instead of using small values of the scale.

Also, the projections against a family of functions
parametrized according to the scale are not always
comparable with |x − x0|α, because for this it is
necessary to consider that if Ψj,k has the first null
moment, then

∫
R
f(t0)Ψj,k(t)dt = 0, hence∣∣∣∣

∫
R

f(t)Ψj,k(t)dt
∣∣∣∣ =

∣∣∣∣
∫

R

(f(t) − f(t0))Ψj,k(t)dt
∣∣∣∣

≤
∫

R

|f(t) − f(t0)||Ψj,k(t)|dt



∫

R

|t− t0|Hf (t0)|Ψj,k(t)|dt.

Using this with a hypothesis on the decay of∫
R
|Ψj,k(t)|dt, we obtain the condition |Ljk| ≤

C2−αj , if 0 < Hf(t0) < 1.
If Hf (t0) > 1, we seek conditions that imply

|f(t) − P (t− t0)| 
 |t− t0|Hf (t0)

(where P (t − t0) is a Taylor polynomial) and then
it is necessary that∫

R

tkΨj,k(t)dt = 0, for k ≤ deg(P ).

So, we cannot ignore the requirement of several
vanishing moments for the wavelet.

Finally, it is necessary to define with better pre-
cision the density ρ(α) function of α-singularities.
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On the other hand, working with the behavior
of the wavelet coefficients cjk implicitly assumes
that there are only cusp singularities, discarding the
presence of chirps (see the next section).

Our proposal is to estimate with a direct method,
similar to that mentioned above, based on the
behavior of wavelet leaders Ljk instead of the cjk.

In this way the stability in the face of the oscil-
lating singularities provided by the wavelet leaders
is preserved. Moreover we also have the freedom
of the method GMWP concerning the concavity or
non-concavity of the multifractal spectrum.

Then we will use the abbreviation GMWLP
(Gradient Modulus Wavelet Leaders Projection),
for the algorithm of direct estimation of the spec-
trum with wavelet leaders, which consists of these
steps:

• We estimate the pointwise Hölder exponents by
the limit

j = N,
N

2
,
N

22
, . . . ,

N

2log2 N
→ 0 : Hf (x0)

= lim
j→+∞

log2 |Ljk|
−j .

• We estimate the density ρ(α).
• Theoretically ρ(α) is the density, that is the

derivative of the distributon function F such that
F (α) = P (x ≤ α) =

∫ α
−∞ ρ(t)dt. And then:

ρ(α) =
d(F (α))
dα

=
d(P (x ≤ α))

dα

= lim
ε→0

P (x ≤ α+ ε) − P (x ≤ α− ε)
2ε

.

So we take a partition of [αmin, αmax] as finely as
possible and we count the proportion of the points
of the series with Holder exponent lying in each
interval:

ρ(α) ≈ 1
2ε




# of points with α− ε
≤ Hf (x) ≤ α+ ε

# total of the series




• We estimate dimension for each α: dim(Eα) =

limr→0 dim(Eα1) −
log( ρ(α)

ρ(α1)
)

log(r) where Eα1 is set of
maximum density and r is the ratio of the inter-
vals of the mesh:

Frequently the series has full support (dimension
1) and then the set Eα1 of maximum density must
also has dimension 1.

On the other hand for the smallest scales (r ≈ 0)
the approximation:

dim(Eα) ≈ 1 −
log( ρ(α)

ρ(α1))

log(r)

= dim(Eα1) − logr

(
ρ(α)
ρ(α1)

)

is equivalent to rdim(Eα) ≈ rdim(Eα1)

ρ(α)
ρ(α1)

, and conse-

quently ρ(α1)
ρ(α) ≈ rdim(Eα)

rdim(Eα1) , as one expect for any rea-
sonable definition of dimension.

3. WAVELET LEADERS VERSUS
OTHER METHODS IN
SIGNALS WITH CHIRPS

Besides the advantages of the WL in terms of algo-
rithmic complexity — only N · logN products are
necessary — and efficiency for monofractal signals
(this is a lack for many statistical methods: DFA
and MF-DFA for instance), a decisive superior-
ity of the WL is the fidelity in signals presenting
chirps.

In the next section we will exhibit examples of
comparison of the mentioned methods. With series
that do not present chirps we will see that the
results are similar. On the other hand, in series
obtained from the first ones by adding chirps with
C∞ regularity, in almost every point the real multi-
fractal spectrum doesn’t vary; for the WL method
the spectrum does not suffer very sensitive distor-
tions, notwithstanding the results obtained using
MF-DFA show substantial alterations.

We will discuss now an heuristic justifica-
tion for the superior efficiency of the methods
based in wavelet leaders in signals with oscillating
singularities.

The following result is due to Jaffard.28 Let α >
0. If f ∈ Cα(x0), then there exists C > 0 such that
∀j ≥ 0, Lj(x0) ≤ C2−αj . Conversely if ∀j ≥ 0,
Lj(x0) ≤ C2−αj then f ∈ Cα

log(x0).
The requirement of belonging to Cα

log(x0) is just
a little weaker than belonging to Cα(x0). Actu-
ally, f ∈ Cα

log(x0) if and only if ∃C, δ > 0 and
a polynomial P of degree at most [α], the inte-
ger part of α, such that: if |x − x0| ≤ δ, then
|f(x)−P (x− x0)| ≤ C|x− x0|α log( 1

|x−x0|). Clearly
Cα(x0) ⊂ Cα

log(x0) ⊂ Cα−ε(x0) ∀ε > 0.
For that reason, working with discreet data we

can assume that the condition of belonging to
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Cα(x0) is essentially equivalent to Lj(x0) � C2−αj ,
that is, Lj(x0) is asymptotic to C2−αj .

Then, let’s suppose that we have : Lj(x0) =
C2−αj , from some scale j0 on and with respect to
an orthogonal wavelet ψ with enough null moments
and belonging to the Schwartz’s class, (except of
an error of higher order). For simplicity we con-
sider the case 0 < α < 1; then P ≡ f(x0). Let’s
see what happens when adding a chirp: A chirp
essentially corresponds to a diagonal region for the
time-frequency plane, corresponding to an almost
asymptotic curve — say in x0 — for the time-scale
plane with respect to the ‖ · ‖∞ norm (detailed
rigorous approaches to chirps are given by Jaf-
fard and Meyer31). A simple example of a chirp is
f(x) = |x|α sin( 1

|x|β ) for x0 = 0.
Let Ch(·) be an ideal chirp at x0, that is a chirp

such that the corresponding wavelet coefficient with
respect to ψ is cj(Ch)(x0) = (−1)j2−j . Because of
the vanishing moments the coefficients for each scale
will be 0 and then:

Lj(f)(x0) ≤ C2−αj + |cj(x0)|
= C2−αj + 2−j = O(2−αj).

Nevertheless, actually the situation will never be
ideal. The probability of having a point x0 such
that the supports of the dilations of the wavelet
for each scale were centered perfectly around x0 is
virtually zero. Consequently we will have troubles:
Since the absolute values of the wavelet coefficients
in x0, |cj(x0)|, may be considerably less than C2−αj

for certain levels, and because of the terms (−1)j2−j

added due to the chirp, the values of log2(|cj(x0)|)
will move across the regression line, seriously dis-
turbing the estimation of the slope.

On the other hand, when considering the inter-
vals contiguous to the cone of influence of x0 for
each scale, we find that the cancellations due to
the moments won’t occur in some of them. So,
we will often have for each j that some of the
coefficients considered for the calculation of the
leader will be of order 2−αj , and also Lj(x0) will
be O(2−αj). And then, we will have for the leaders:
O(2−αj) + O(2−j) = O(2−αj). Evidently there can
be slight deviations for some scale and for small val-
ues of j, but not asymptotically (this is the moral of
the mentioned theorem of Jaffard). This way a pru-
dent implementation of the WL will provide right
values for the terms of the partition function.

One must notice that when considering only
the wavelet coefficients there will be cancellations

almost everywhere for arbitrarily great scales. So,
by incorporating chirps, there will always be unpre-
dictable jumps across the line of regression for the
points close to the location of maximal frequency.
And then the corresponding terms of the partition
function will be substantially affected. Thus, when
incorporating a few chirps whose regions of high
frequency cover, for the corresponding level of dis-
cretization, a substantial part of the support of the
signal, there would be no certainty at all about of
the accuracy of the formalisms based in wavelet
coefficients instead of wavelet Leaders. On the other
hand, the addition of an infinitely oscillating func-
tion, if it has zero-mean, does not alter the profiles,
but the trends cannot be eliminated with polyno-
mial fitting despite the order of the MF-DFA used.
So the estimation with this method also turns out
to be completely ruined though there are few chirps
in the signal.

4. TESTS FOR SERIES WITH
AND WITHOUT CHIRPS
WITH CONCAVE AND
NON-CONCAVE SPECTRA

The performance of both methods is compared
(Figs. 1 and 2) for random wavelet cascades and
for binomial multifractal series (BMS), with known
multifractal behavior. For BMS the parameter a,
that we will describe later, goes from 0.52 up to
0.98 (with step 0.01), the admissible values of a lie
in the interval (0.5, 1). We avoid values close to 0.5
or 1 in order to elude numerical instabilities. For

Fig. 1 WL spectra of the BMS.
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Fig. 2 GMWLP spectra of the BMS.

both methods the accuracy is very similar for all
the considered values of a, so we show (Fig. 3) the
graphics for a = 0.75 and for series of length 213.

A binomial multifractal series of length 2ω, x(s),
with s = 1, . . . , 2ω can be obtained taking x(s) =
aφ(k−1)(1 − a)ω−φ(k−1) where φ(s) is the number of
digits equal to 1 in the binary expansion of s [with
a ∈ (0.5, 1)]. For instance, if s = 27 = (11011)2 we
have φ(s) = 4.

For our samples we take symmetric series of
length 2ω+1, reflecting the BMS from right to
left.

We also test the methods by adding to the for-
mer series sequences of eight chirps of the form:
C · (1 − t2)2|t|0.5Ch(t) where Ch(t) is a function
whose frequency increases from 0 to 80 when |t|

goes from 1 to 0 and with a convex track in the
time-frequency plane, and its graphic is (Fig. 4).

One can see (Fig. 1) that the spectra obtained
with WL or GMWLP are almost unaltered by the
chirps as was theoretically predicted, since the men-
tioned chirps have regularity C∞ in almost every
point. Nevertheless, the wavelet leaders are those
who guarantee these desirable results, since the
majority of the current methods, based on coef-
ficients wavelet or q-modulus of continuity, are
notably altered by the presence of chirps.

Besides we test the methods against dyadic ran-
dom wavelet cascades. We use an algorithm based
on random cascades (RC) on wavelet dyadic trees.
This algorithm builds a random multifractal series
by specifying its discrete wavelet coefficients. We
begin with a coefficient 1 for the lower scale and
we obtain recursively the coefficients for the next
scale by multiplying by ±2−h where h is a random
variable with normal distribution (and with random
sign) (see Kantelhardt et al.22). Taking directly this
series the results are quite similar, but we also build
series by concatenating or by inserting BMS or RC
to obtain series with non-concave spectra.

5. A DISCUSSION ABOUT
NON-CONCAVE SPECTRA

As we have already mentioned, the current meth-
ods use various hypotheses about the functions or
signals with which they deal, hypotheses generally
known as multifractal formalisms. But they always
provide multifractal concave spectra (due to the fact
that they use the Legendre transform, which needs

Fig. 3 BMS series.
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Fig. 4 Our model of Chirp.

a presumption of concavity). Notwithstanding, not
all the signals or functions have got real concave
spectra.

In many cases the real spectrum must be non-
concave, and the methods that use multifractal for-
malisms only obtain, in the best case, its concave
hull, or they are completely erroneous.

Let’s build an explicit example of a function with
non-concave spectrum:

(a) Let x be a BMS: x(k), with a suitable value of
a, such that their Hölder exponents lie in the
interval [0.4, 2.2] and its support is [0, 1]. This
is always possible (see Kantelhardt et al.22).

(b) Afterwards we build another function whose
spectrum will be the same as that of x but
translated by two units; then their Hölder expo-
nents lie in the interval: [2.4, 4.2], and its sup-
port is included in [0, 1]. Is it possible to
obtain such translation in the spectrum? Yes,
by definition

d(α) = dim(Eα) = dim{x/Hx(t) = α}
and it is sufficient to find a function

z : ∀t ∈ [0, 1], Hz(t) = Hx(t) + 2. Now, H(·) is
the Hölder exponent of a continuos functions if and
only if it is the limit inferior of a secuence of contin-
uous functions.28,32 Then Hx(t) and consequently
Hx(t) + 2 are limit inferior of continuous functions.

Then there exists a continuous function z with
Hz(t) = Hx(t) + 2, and then dim(Eα+2(z)) =
dim({x | Hz(t) + 2 = α + 2} = dim({x | Hx(t) =
α} = dim(Eα). The demonstration of the theorem

1 2 3 4
0.0

0.5

1.0

x

y

Fig. 5 Non-concave spectrum of the function s(t).

of Andersson’s paper32 suggests how to construct z
by multiplying for 22j the values of the wavelet coef-
ficients cjk (and then the wavelet leaders change)
obtaining limj→+∞

log2 |Ljk(z)|
−j = HZ(t0) from the

leaders corresponding to the neighborhoods of each
t0 ∈ [0, 1].

(c) Taking w(t) = z(t − 1) we have that the spec-
trum of w is the same as the spectrum of z, but
the support of w is included in [1, 2].

(d) Now we define

s(t) =
{
x(t) if t ∈ [0, 1]
w(t) if t ∈ [1, 2]

and as the level sets of the Hölder exponents of
both intervals are disjoint (the dimension is not
additive), we have that:

if α ∈ [0.4, 2.2] then dim(Eα)
= dim({t | Hs(t) = α}
= dim({t | Hx(t) = α}

if α ∈ [2.4, 4.2] then dim(Eα)
= dim({z | Hs(t) = α}
= dim({w | Hw(t) = α}

and then the spectrum of s is non-concave
(Fig. 5).

After this theoretical example, let’s return to the
numerical estimations of the spectrum.

In Fig. 6 we show a series obtained by the follow-
ing steps: a BMS is calculated as described above;
then we generate a series with regularity at every
point equal to that of the respective point of the
BMS but increased in a certain fixed value (4

3 in
the graphics but analogous results may be obtained
with other values great enough); finally a new series
is generated, mixing sections of the BMS and of the
another series (the one obtained by increasing the
regularity of the BMS).

Fr
ac

ta
ls

 2
00

9.
17

:3
11

-3
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
81

.1
.1

7.
12

8 
on

 0
3/

16
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



August 4, 2009 8:36 00433

320 R. Cardo & A. Corvalán

Fig. 6 Series obtained from BMS.

Fig. 7 Spectra of the series of Fig. 6.

As the dimensions are not altered, clearly the
spectrum will be non-concave (the red solid line
of Fig. 7). The method of WL, based on the Leg-
endre transform, can only capture (approximately)
the concave hull of the real spectrum. On the other
hand, the GMWLP does not have the limitation
of concavity, and the spectrum with GMWLP is a
good approximation to the theoretical spectrum.

6. COMPARISON OF THE
COMPUTATIONAL
COMPLEXITY

None of the algorithms for computing the multifrac-
tal spectrum require a great amount of resources
(neither the two we are taking in consideration nor
any other known by us) so we will not pay attention

to memory allocation and we will focus on studying
the question about execution time.

Running any reasonably accurate implementa-
tion of the MF-DFA and of the WL will convince
us that the latter method is faster than the former.

Let’s analyze the number of operations (espe-
cially products) necessary for each method.

For the MF-DFA the critical steps occur when
the local trends and the fluctuation function are cal-
culated. The other steps only require O(N) sums for
obtaining the profile, no more than O(N2) index-
ing operations (the time required for this is despi-
cable in comparison with the time required for
products) and O(N) products for taking log-log
slopes and for performing the Legendre transform
in order to finally computing the spectrum. But the
m−MFDFA requires, for each window lengths
under consideration, at least

(m+2)2 ·s·2Ns+(s+1)·2Ns+2Ns+2 ≈ 2(m+2)2N

products (the first term is the greater one) to com-
pute the least square fitting functions necessary for
calculating the variances and for obtaining the fluc-
tuation functions. We don’t take in account a sim-
ilar number of sums and differences. The number
of window lengths to be considered vary from one
implementation to another but always beginning
with a size greater than m+ 2 but relatively small,
10 in our examples, and increasing up to a rela-
tively great value of the order of N, in our examples
[N4 ], and skipping arithmetically with increment 10
for our implementation. This give us an amount of
about εN instances of the 2m2N products men-
tioned above for each one of the values of q, where ε
is an small constant, smaller than one: εN ≈ 1

10
N
4 =

1
40N for us. So we have 2k(m + 2)2εN2 products,
where k is the number of values of q considered (21,
between −10 and 10 for us). In the examples of
this work we took the minimum order of m, that is
m = 1, and so we have about 10N2 operations. Nat-
urally it is possible to sacrifice some accuracy taking
a greater skip from a window size to the next. But
the factor (m + 2)2 cannot be reduced and it does
not appear reasonable to take k much smaller: If
we assume the usual shape (“almost parabolic”) of
the spectrum, the minimum sampling size would be
about k = 5 if this method could guarantee exact
results but this optimistic supposition is far from
being true in real cases, especially if we must con-
sider values of |q| > 10 (and this is not a rare case);
so it does not seem to be useful to take k < 10.
In any case the method is of order O(N2) and the
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constant cannot be taken very little if we hope to
have a reasonable degree of accuracy. For the usual
lower bounds for the sampling rate and the length
of many series where we expect to have multifractal
behavior it does not seem realistic to take a skip
greater than 100 for window sizes (and perhaps the
practical value must be quite smaller). So, the men-
tioned constant is at least approximately 1 and usu-
ally much larger in practice.

On the other hand, for the WL the most lengthy
stage is the proper computing of the wavelet coeffi-
cients which is of order O(N logN) with a constant
proportional to the number of nodes necessary to
represent the orthonormal wavelet required. That
is related to the number of null moments needed
for to cancel the polynomials with degree up to the
integer part of the maximal Hölder regularity of the
signals. In the practice we rarely find Hölder regu-
larity greater than 4 and then Daubechies wavelets
of order 4 (like db4 or sym4) are enough. We use
sym4 in the examples with 4.4 − 1 = 15 nodes. If
we would like to analyze specially smooth series we
can take dbN or symN with 4N −1 nodes but usu-
ally it is not necessary to take N greater than 8. WL
also needs about 5N comparisons of double preci-
sion numbers, O(N) sums or differences and O(N)
additional products, but this doesn’t increases the
order of the method.

Summarizing we have for the samples we have
studied (mean length 212) that the WL method
should be approximately 10

15 log2(212) = 8 times
faster in agreement with what we have observed in
the practice.

7. CONCLUSIONS

Besides the profitable considerations about the
computational complexity mentioned in the previ-
ous section, it is necessary to emphasize the points
that we describe now.

The tests previously realized suggest that the
GMWLP is preferable for analyzing the series of
EEG without losing some relevant information that
is lost when applying methods that use the Legen-
dre Transform, since the latter algorithms does not
allow to visualize non-concave spectra.

With regard to this question, Durand,33 gives
examples of functions obtained from wavelet coeffi-
cients correlated by Markov chains in the torus hav-
ing random not concave spectra, and he gives series
with oscillating singularities almost everywhere of
the torus.

Finally we remark that in signals artificially gen-
erated (like BMS or RC) the hypotheses are fulfilled
and the methods provide similar spectra.

On the other hand, in signals from empirical
sources the spectra calculated by the different meth-
ods differ considerably in certain signals.

Such difference is probable since, for example, in
empirical EEG signals we cannot assure that nec-
essarily they should correspond to an self-similar
function or an approximately self-similar one.

Having a discreet signal for the analysis
each method estimates the spectrum introducing
hypothesis about the behavior of the unsampled val-
ues. In the case of methods that use the Legendre
Transform the concavity of the scaling function is
equivalent to a presumption of self-similarity (per-
haps approximated) in every scales.

On the other hand the GMWLP assumes that
we can estimate reasonably the distribution of the
exponents Hölder from a fine enough histogram, and
this implies that the function of Hölder exponents
has not only bounded variation but also the diam-
eter of the considered partition is sufficiently small
with respect to this variation for estimation of the
density with a reasonable precision.
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