Biotransformación de Cr(VI) mediada por bacterias y su aplicación en sistemas de tratamiento de aguas residuales industriales

Trabajo de Tesis Doctoral para optar por el título de:

Doctor en Ciencia y Tecnología

Autor: Mauricio Javier Alessandrello

Directora: Diana Lía Vullo
Contenidos
Abreviaturas .. 6
Aportes originales ... 7
Capítulo I .. 9
 Introducción .. 10
 El cromo en la naturaleza ... 11
 Geoquímica del cromo .. 12
 Usos del cromo en la industria .. 13
 Toxicidad del cromo ... 13
 Legislación y regulación de la descarga de aguas residuales que contienen Cr(VI) .. 14
Tratamientos de aguas residuales que contienen Cr(VI) .. 15
 Tratamientos basados en la reducción de Cr(VI) a Cr(III) .. 15
 Reducción química de Cr(VI) ... 15
 Reducción electroquímica de Cr(VI) ... 16
 Tratamientos convencionales que no implican reducción de Cr(VI) 18
 Tratamientos no convencionales .. 19
 Biosorción de Cr(VI) ... 19
 Reducción fotocatalítica de Cr(VI) .. 20
 Reducción biológica de Cr(VI) ... 20
Hipótesis y objetivos ... 22
 Hipótesis ... 23
 Objetivo general ... 24
 Objetivos específicos .. 24
Referencias .. 26
Capítulo II ... 33
 Biotransformación de Cr(VI): Optimización del proceso .. 34
 Introducción ... 35
 Desarrollo experimental ... 37
 1. Determinación cuantitativa de Cr(VI) ... 37
 2. Reducción de Cr(VI) mediada por células en cultivo .. 38
 2.1. Evaluación del efecto de acostumbramiento al Cr(VI) en células de Klebsiella oxytoca P2 en la biotransformación de Cr(VI) ... 38
2.1.1 Preparación del pre-inóculo .. 38
2.1.2 Ensayos de reducción de Cr(VI) ... 38
2.2 Biotransformación de Cr(VI) en células en crecimiento 40
3. Reducción de Cr(VI) con células en reposo 45
 3.1 Influencia de la fase de crecimiento en la biotransformación de Cr(VI) 45
 3.1.1 Obtención de biomasa en fase exponencial 45
 3.1.2 Reducción de Cr(VI) con células en reposo cosechadas en fase exponencial ... 45
 3.1.3 Reducción de Cr(VI) con células en reposo cosechadas en fase estacionaria ... 46
 3.1.4 Dependencia del estadio fisiológico celular y del dador de electrones en la biotransformación de Cr(VI) 47
 3.2 Obtención de biomasa concentrada ... 49
 3.3 Efecto de la concentración del dador de electrones en la reducción de Cr(VI) ... 50
 3.4 Biotransformación de Cr(VI) por Pseudomonas veronii 2E 52
 3.4.1 Efecto de una mayor concentración inicial de Cr(VI) 52
 3.4.2 Efecto de la temperatura .. 53
 3.4.3 Efecto del pH .. 55
Discusión ... 57
Conclusión ... 59
Referencias .. 60
Capítulo III. ... 63
Inmovilización de Pseudomonas veronii 2E aplicada a tratamientos de aguas residuales que contienen Cr(VI) ... 64
Introducción ... 65
Desarrollo experimental ... 68
 1. Reducción de Cr(VI) con células inmovilizadas en alginato de calcio y en agarosa ... 68
 1.1 Inmovilización en alginato de calcio 68
 1.2 Inmovilización en agarosa .. 68
 1.3 Reducción de Cr(VI) con células inmovilizadas 69
 1.4 Optimización de la temperatura en la reducción de Cr(VI) con células inmovilizadas ... 71
Agradecimientos

A toda mi familia, por su ayuda incondicional y por ser mi sostén en la vida.

A Matías, a quien todavía le debo infinidad de favores (y seguramente le voy a seguir debiendo) y por ser un excelente amigo.

A María, alias “Merí”, gracias a quien adquirí el preciado don de la PACIENCIA.

A Irene, por estar siempre dispuesta a tender una mano amable.

A Javi, por interiorizarme en el mundo del tratamiento de aguas residuales con Cr(VI) y por suministrarme datos muy importantes para la escritura de esta tesis.

A Alejandra por su inestimable ayuda en el diseño de biorreactores.

A mi directora Dra. Diana Vullo, por confiar en mí para el desarrollo de este trabajo, por dejarme desarrollar ideas propias fortaleciendo así mi visión crítica y espíritu emprendedor y, sobre todo, por la paciencia que me supo tener.

Y muy especialmente al amor de mi vida, compañera inseparable y alegría de todos mis días, mi querida esposa, Karina.
Abreviaturas

ADN: Ácido desoxirribonucleico.
DO$_{600\text{nm}}$: Densidad óptica a 600nm.
Fig.: Figura
glc: Glucosa
NADH: Dinucleótido de nicotinamida y adenina reducido.
NADPH: Dinucleótido de nicotinamida y adenina fosfato reducido.
ppm: Partes por millón.
rpm: Revoluciones por minuto.
UV: Ultravioleta.
Aportes originales

Las aguas residuales provenientes de galvanoplastia, de la industria metalúrgica y la industria química en general presentan concentraciones de Cr(VI) por encima de los niveles permitidos por ley para su descarga en cuerpos de agua receptores o en plantas de tratamiento cloacal. Por lo tanto, estas industrias deben tratar sus aguas previamente a la descarga. Sin embargo, los tratamientos convencionales del tipo químico (reducción de Cr(VI) con bisulfito de sodio y posterior precipitación del Cr(III) generado) son muchas veces ineficientes y costosos. En el presente trabajo se desarrolla un sistema de tratamiento biológico que es más económico, eficiente y ambientalmente amigable. En trabajos anteriores al desarrollo de la presente tesis se aislaron bacterias provenientes del río Reconquista (Buenos Aires) que eran resistentes al Cr(VI) y poseían capacidad de reducción del Cr(VI) (*Pseudomonas veronii* 2E, *Klebsiella oxytoca* P2 y *Klebsiella ornithinolytica* 1P). En el presente trabajo se evaluó la capacidad de reducción de cada una de estas cepas cuando se encontraban en crecimiento en un medio nutritivo o cuando se encontraban en estado quiescente en suspensiones celulares suplementadas con un dador de electrones. La diferencia entre ambas metodologías consistía en que las células en crecimiento poseían un metabolismo activo aunque la concentración bacteriana era baja. En cambio, las suspensiones celulares podían ser concentradas a fin de aumentar la densidad celular que normalmente se obtiene en un cultivo. Además, al trabajar en ausencia de un medio de cultivo, se simplificaba el procedimiento y su aplicación a nivel industrial. Los resultados obtenidos mostraron claramente que la tasa de reducción de Cr(VI) dependía de manera directamente proporcional a la concentración bacteriana y, en menor medida, a la concentración del dador de electrones. Los ensayos con células en crecimiento arrojaron tasas de reducción bajas porque la densidad alcanzada en los cultivos fue igualmente baja. La cepa con la que se obtuvo la mayor tasa de reducción en estado quiescente fue *P. veronii* 2E a una densidad de 36g (biома seca)/l y 20mM de glucosa como dador de electrones. En estas condiciones se logró una reducción total del Cr(VI) (1mM) en 4-5 horas. Se evaluó la capacidad de reducción de Cr(VI) de esta cepa a distintos pHs y temperaturas y los valores óptimos fueron 7 y 32ºC respectivamente. A fin de implementar el tratamiento a aguas residuales industriales, se ensayaron distintas técnicas de inmovilización bacteriana por oclusión en agarosa o en alginato de calcio. Se utilizaron suspensiones de *P. veronii* 2E en base a los resultado anteriores. Tanto con agarosa como con alginato de calcio la tasa de reducción en las condiciones óptimas se vio reducida ya que se agrega un paso de difusión.
de los sustratos (Cr(VI) y glucosa) a través de la matriz de inmovilización en la reacción global. El 100% de reducción se alcanzó en 8 horas. Debido a que el alginato de sodio es más económico que la agarosa, se empleó a éste en los experimentos siguientes en los que se aumentó la escala de producción de biomasa y tratamiento. Para esto se diseñó un biorreactor para la generación de biomasa de manera semi-continua y se realizaron ensayos en una columna calefaccionada en donde la bacteria inmovilizada fue utilizada repetidas veces en lotes consecutivos de soluciones de Cr(VI) 1mM. Esto permitió determinar la cantidad de veces que el biocatalizador podía ser utilizado, antes de que perdiera actividad. En total, el catalizador pudo ser reutilizado cinco veces antes de que la actividad reductora disminuya de tal manera que no se produzca la reducción total del Cr(VI) en 8 horas. A partir de estos resultados se procedió al tratamiento de dos aguas residuales provenientes de una empresa productora de piezas metálicas de grifería de 0,26 y 0,69ppm de Cr(VI). El tratamiento fue de forma continua con un tiempo de retención hidráulico de 30 minutos. El tratamiento se efectuó durante 150 horas corridas antes de la pérdida de actividad. No se encontró cromo en el líquido tratado. Para reducir los costos de implementación de este tratamiento a nivel industrial, se buscaron medios de cultivo alternativos económicos basados en melaza de caña o glicerol crudo y un fertilizante comercial. Los mayores rendimientos se obtuvieron con glicerol ácido al 5%v/v y fertilizante al 0,6%v/v. Utilizando este medio de cultivo se produjo la biomasa para tratar un agua residual de una empresa productora de ácido crómico de 40ppm de Cr(VI). El agua se trató en lotes consecutivos produciendo la reducción total del Cr(VI) en hasta doce horas durante cinco días consecutivos.

En conclusión, se logró desarrollar un tratamiento biológico de aguas residuales de baja y media concentración de Cr(VI) utilizando medios de cultivo económicos para la producción de biomasa. Sin embargo, el tratamiento de aguas con mediana concentración de Cr(VI) resultó inviable por sus altos costos. En cambio, el tratamiento de aguas residuales con baja concentración de Cr(VI) resultó más económico que el tratamiento convencional. La tecnología aquí desarrollada es adecuada para el tratamiento de corrientes que contienen una baja carga de Cr(VI) ya que presenta ventajas económicas y ambientales en comparación con los métodos utilizados comúnmente.
Capítulo I.
Introducción
El cromo en la naturaleza

El cromo (Cr) en su estado de valencia elemental es un metal duro, lustroso, de color gris y su ocurrencia en la naturaleza es rara. Se lo puede encontrar en ambientes altamente reductores como en la mina Udachnaya en Rusia en donde también se producen diamantes (Sueker et al 2005). Sin embargo, altas cantidades de Cr(III) se encuentran distribuidas en la corteza terrestre en forma de cromita (FeCr$_2$O$_4$). El Cr(VI) también se encuentra en la naturaleza aunque en menores cantidades que el Cr(III) bajo la forma de crocoíta (PbCrO$_4$) (ATSDR 2000) (Fig. 1). La existencia de estos minerales hacen que el cromo sea el sexto elemento más abundante en la corteza terrestre con una abundancia promedio de 100mg/kg (Sueker et al 2005).

La cromita es el mineral explotado económicamente para la extracción del cromo. Las reservas mundiales de este compuesto se estiman que son mayores a las 480.000 toneladas métricas. Las principales reservas se encuentran concentradas en Kazahkstan, Sudáfrica y la India con 220.000, 200.000 y 54.000 toneladas métricas respectivamente (Papp 2012). La crocoíta, en cambio, es demasiado rara para ser explotada económicamente y sólo es apreciada por coleccionistas (Sueker et al 2005).
Geoquímica del cromo

El cromo existe en la naturaleza de manera estable como Cr0, Cr(III) y Cr(VI) aunque existen otros estados transientes como el Cr(IV), Cr(V) o Cr(II) (Daulton et al 2006). Cr(III) es generalmente inmóvil en el suelo ya que se adsorbe fuertemente a superficies de arcillas minerales, a óxidos de manganeso y a hierro hidratado tanto en la forma de Cr$^{3+}$ como en la forma de hidróxidos iónicos (Hering et al 2004). Además, en el rango de pH neutro Cr(III) forma Cr(OH)$_3$ que es insoluble, disminuyendo aún más la movilidad del cromo. El cromo trivalente puede, sin embargo, formar complejos con compuestos orgánicos solubles y de esta manera adquirir movilidad (Puzon et al 2007, Cao et al 2011). El cromo hexavalente, en cambio, es soluble en toda la escala de pH y, en consecuencia, altamente móvil. El Cr(VI) puede inmovilizarse al adsorberse en superficies arcillosas cargadas positivamente, especialmente a pH ácido. Sin embargo, este fenómeno de adsorción puede suprimirse en presencia de iones competitivos como el sulfato y el fosfato o por aumento del pH o de la fuerza iónica (Bartlett et al 1976).

En suelos y sedimentos en equilibrio con el oxígeno atmosférico existen óxidos de manganeso y compuestos orgánicos oxidables. El Cr(VI) presente en este suelo proveniente generalmente de contaminación puede ser reducido a Cr(III) por la materia orgánica o por la presencia de Fe(II). El Cr(III) generado puede inmovilizarse o formar complejos con materia orgánica de manera de permanecer soluble. Este cromo orgánico soluble estará disponible para que los óxidos de manganeso lo oxidan a Cr(VI) completando el ciclo (Fig. 2). Estos procesos redox son posibles al mismo tiempo aunque la oxidación de Cr(III) a Cr(VI) es relativamente lenta comparada con la reducción de Cr(VI) a Cr(III). La cinética de estas reacciones dependerá del pH del medio, la concentración de agentes reductores y oxidantes y la disponibilidad de los sustratos. De esta manera, la persistencia del Cr(VI) en el ambiente se producirá si la tasa a la que se introduce el Cr(VI) es mayor que la tasa de reducción natural del suelo que suele ser de días dependiendo del tipo de suelo y de la concentración de Cr(VI) (Bartlett et al 1991, Choppala et al 2013).
Usos del cromo en la industria

El cromo es utilizado en una gran variedad de industrias. En la industria textil el dicromato de potasio (K₂Cr₂O₇) es usado desde 1820 como fijador o estabilizador de colorantes para prevenir la decoloración de las fibras textiles (Suecker et al 2005). En metalurgia, el cromo es usado para el proceso de cromado de piezas metálicas. El 90% del consumo industrial del cromo se efectúa en este proceso (ICDA 2014) que consiste en “bañar” a las piezas metálicas en una solución de Cr(VI) que se conoce industrialmente como “ácido crómico”. De esta manera se obtiene un producto de mayor dureza, bajo coeficiente de fricción y resistencia a la corrosión. Otras formulaciones con Cr(VI) se utilizan, además, para la conservación de la madera contra el ataque de hongos e insectos y para el curtido de cueros (Jacobs et al 2004).

Toxicidad del cromo

Los efectos del cromo en la salud dependen de su estado de oxidación, de la concentración y de la vía de exposición. El Cr(III) se considera un micronutriente esencial. Según el Instituto de Medicina del Consejo Nacional de Investigación de los Estados Unidos la cantidad de Cr(III) que un adulto o adolescente debe incorporar en su dieta es de 20-45µg
Cr(III)/día (ATSDR 2012). Aún no se conoce en qué procesos metabólicos interviene el Cr(III) pero se cree que está involucrado en el metabolismo de la glucosa (Bielicka et al 2005, Dahl et al 2013). No obstante, la exposición a altas concentraciones de Cr(III) puede causar afecciones respiratorias y alergias cuando la vía de entrada es por inhalación y por contacto dérmico respectivamente (ATSDR 21012). Hay pocos estudios en los que se reporte que el Cr(III) tenga efectos cancerígenos o afecte la reproducción y el desarrollo embrionario, y los resultados son tema de debate (ATSDR 2012). El Cr(VI), en cambio, produce un mayor daño a la salud que el Cr(III). Si es inhalado, el Cr(VI) puede producir irritación nasal, perforaciones y ulceraciones en el septo nasal, bronquitis, neumonía y cáncer de pulmón (McNeill et al 2012, Dahl et al 2013, ATSDR 2012). Si es ingerido, puede provocar dolor abdominal, vómitos, úlceras, hemorragias y diarrea. Por contacto con la piel, se pueden producir quemaduras, irritación y dermatitis (ATSDR 2012). Además, el Cr(VI) posee efectos mutagénicos. Dentro de la célula, el cromo hexavalente es rápidamente reducido a Cr(III) pasando por los estados intermedios de Cr(V) y Cr(IV) generando especies reactivas de oxígeno que producen daños en la estructura del ADN (Arslan et al 1987, Kadiiska et al 1994, Liu et al 1995, McCaroll et al 2010, Zhitkovich et al 2011). En trabajadores expuestos al Cr(VI) se han registrado efectos adversos en los cromosomas y existe evidencia de que el Cr(VI) induce la ruptura de la molécula de ADN, aberraciones cromosómicas y desregulación de la síntesis de ADN (ATSDR 2012).

Legislación y regulación de la descarga de aguas residuales que contienen Cr(VI)

Debido a los efectos tóxicos del Cr(VI), en el mundo existen leyes que limitan la concentración de cromo hexavalente que debe haber en un agua residual industrial para que pueda ser descargado en cuerpos de agua receptores. En Argentina la ley nacional 26.221, artículo 122, anexo B, regula los niveles de Cr(VI) y Cr(III) que deben tener los desagües cloacales y establece que las descargas no deben tener una concentración mayor a los 0,2ppm para Cr(VI) y de 2ppm para Cr(III). En Estados Unidos el código de regulaciones federales (Code of Federal Regulations) en su título 40, volumen 24, inciso 141.62 establece que el nivel máximo de cromo total en sistemas acuáticos debe ser de 0,1ppm. En Europa, la directiva 98/83/CE del consejo establece una concentración de cromo en aguas para consumo humano de menos de 0,05ppm.
Tratamientos de aguas residuales que contienen Cr(VI)

Tratamientos basados en la reducción de Cr(VI) a Cr(III)

A diferencia del Cr(VI), el Cr(III) es mucho menos tóxico y forma precipitados insolubles a pHs cercanos a la neutralidad. Esta propiedad permite que el cromo pueda ser separado del agua residual industrial para que éste pueda ser descargado según las regulaciones vigentes. Por este motivo, muchos tratamientos de aguas residuales que contienen Cr(VI) constan de un primer paso en el que el Cr(VI) es reducido químicamente para que luego, con el agregado de sustancias alcalinas, precipite en forma de hidróxido de cromo.

Reducción química de Cr(VI)

La reducción química se logra al mezclar el agua residual que contiene Cr(VI) con sustancias reductoras como el bisulfito de sodio en solución ácida para generar el agente reductor H$_2$SO$_3$, el dióxido de azufre gaseoso o sales de hierro (Barrera-Díaz et al 2012, Gheju et al 2006). Con bisulfito de sodio y con sales de hierro la reacción de reducción ocurre en condiciones de acidez por lo que luego del proceso se debe neutralizar para lograr la precipitación del Cr(III) generado. Las reacciones que ocurren son las siguientes (Barrera-Díaz et al 2012):

- Bisulfito de sodio:
 (1) NaHSO$_3$$_{(aq)}$ + H$^+$$_{(aq)}$ \rightarrow H$_2$SO$_3$$_{(aq)}$ + Na$^+$$_{(aq)}$ (generación del agente reductor)

 (2) 4CrO$_4^{2-}$$_{(aq)}$ + 6NaHSO$_3$$_{(aq)}$ + 3H$_2$SO$_4$$_{(aq)}$ + 8H$^+$$_{(aq)}$ \rightarrow 2Cr$_2$(SO$_4$)$_3$$_{(aq)}$ + 3Na$_2$SO$_4$$_{(aq)}$ + 10H$_2$O (reducción)

 (3) Cr$_2$(SO$_4$)$_3$$_{(aq)}$ + 6NaOH$_{(aq)}$ \rightarrow 2Cr(OH)$_3$$_{(s)}$ + 2H$_2$O (precipitación)

- Dióxido de azufre:
 (1) SO$_2$$_{(g)}$ + H$_2$O \rightarrow H$_2$SO$_3$$_{(aq)}$ (generación del agente reductor)
Las reacciones de reducción y precipitación son las mismas que las reacciones (2) y (3) para el bisulfito de sodio.

- **Sales de hierro**

 (1) \[6\text{Fe}^{2+}_{(aq)} + \text{Cr}_2\text{O}_7^{2-}_{(aq)} + 14\text{H}^+_{(aq)} \rightarrow 6\text{Fe}^{3+}_{(aq)} + 2\text{Cr}^{3+}_{(aq)} + 7\text{H}_2\text{O} \] (reducción)

 (2) \[\text{Cr}^{3+}_{(aq)} + 3\text{OH}^-_{(aq)} \rightarrow \text{Cr(OH)}_3(s) \] (precipitación)

Si bien estos tratamientos son de muy fácil aplicación tienen muchas desventajas. La principal es la cantidad de residuo sólido que se produce ya que el hidróxido de cromo es muy poco compacto lo que dificulta su manejo, traslado y disposición final elevando los costos (Lopez-Garcia et al 2010). Además, para asegurarse una reacción completa, se vierte un exceso del agente reductor lo que hace al sistema muy poco eficiente e incrementa los costos (Zakaria et al 2008). Esto hace que estos tipos de tratamiento no sean recomendados para tratar aguas con bajo contenido de Cr(VI). En el caso del uso de sales de hierro, se forma en la reacción de precipitación hidróxido de hierro(III) lo que aumenta aún más la cantidad de residuo generado (Barrera-Díaz et al 2012) mientras que en el caso de la adición de bisulfito de sodio se pueden producir sulfuros que necesitan otro tratamiento (Isa et al 2007). Por otro lado, las condiciones de reacción son de extrema acidez lo que implica acidificar el agua residual previo al tratamiento, elevando el costo total del proceso (Zakaria et al 2008).

Reducción electroquímica de Cr(VI)

En la reducción electroquímica el agente reductor es generado mediante la disolución de un electrodo en el agua a tratar al aplicar una corriente eléctrica. Si, por ejemplo, se emplean electrodos de hierro, en el ánodo, el hierro elemental sólido se disolverá al oxidarse por la liberación de electrones que tiene lugar al aplicarse una diferencia de potencial. Los cationes de Fe(II) generados actúan como agentes reductores oxidándose a Fe(III) y reduciendo el Cr(VI) a Cr(III) (Xu et al 2014). También puede ocurrir, sobre todo cuando se trabaja a altas densidades de corriente, que la reducción de Cr(VI) se produzca directamente en el cátodo por medio de los electrones que fueron liberados al oxidar el electrodo de hierro en el ánodo (Barrera-Díaz et al 2011). El Cr(III) generado precipita como hidróxido de
cromo al aumentar el pH entre 6 y 8. Este proceso de disolución del ánodo para la liberación de agentes reductores se favorece a pHs bajos y se denomina electrodisolución (Xu et al 2014). Si se trabaja en condiciones de acidez moderada se produce el fenómeno de electrocoagulación en donde el agente reductor producto de la oxidación del ánodo (Fe(II) en el caso de electrodos de hierro) actúa como agente desestabilizante (Barrera-Díaz et al 2012, Akbal et al 2011) al formar hidróxidos insolubles. Estos agentes desestabilizantes interactúan electrostáticamente con el contaminante neutralizando las cargas y formando un precipitado insoluble. La formación de hidrógeno gaseoso que ocurre por electrólisis del agua en el cátodo produce la flotación de los flóculos formados facilitando el proceso de remoción (Akbal et al 2011, Cheng 2003). Este proceso se lo denomina electrocoagulación/flotación (Emamjomeh et al 2009). Para este tipo de tratamiento pueden usarse también electrodos de aluminio en donde el agente desestabilizante es Al(OH)$_3$ (Cheng 2003). Las reacciones que ocurren utilizando un electrodo de hierro a bajo pH son las siguientes (Barrera-Díaz et al 2012):

- **Reacción en el ánodo**

 1. Fe(s) \rightarrow Fe$^{2+}$(aq) + 2e$^-$ (oxidación del electrodo)

- **Reacciones en el cátodo**

 1. 2H$^+$(aq) + 2e$^-$ \rightarrow H$_2$(g) (generación de hidrogeno gaseoso por reducción de protones)

 2. 2H$_2$O + 2e$^-$ \rightarrow H$_2$(g) + 2OH$^-$ (generación de hidrogeno gaseoso por electrólisis del agua)

 3. Fe$^{3+}$(aq) + e$^-$ \rightarrow Fe$^{2+}$(aq) (reducción del Fe(III) formado por la oxidación del Fe(II) en la reducción de Cr(VI))

 4. HCrO$_4$ (aq) + 7H$^+$(aq) + 3e$^-$ \rightarrow Cr$^{3+}$(aq) + 4H$_2$O (reducción de Cr(VI) directamente en el cátodo)
Reacciones en la solución

(1) \[3\text{Fe}^{2+} (aq) + \text{HCrO}_4^- (aq) + 7\text{H}^+ (aq) \rightleftharpoons 3\text{Fe}^{3+} (aq) + \text{Cr}^{3+} (aq) + 4\text{H}_2\text{O} \] (reacción redox entre el hierro y el cromo)

Estos tipos de tratamiento electroquímico presentan ventajas con respecto a los tratamientos químicos ya que se reduce la cantidad de reactivos empleados debido a que el agente reductor es generado \textit{in situ} en el ánodo a partir de la aplicación de una diferencia de potencial entre los electrodos (Benhadji \textit{et al} 2011). Además, la tasa de reducción de Cr(VI) en estos tratamientos es elevada disminuyendo el tiempo del proceso (Almaguer-Busso \textit{et al} 2009, Akbal \textit{et al} 2011). Sin embargo, altas densidades de corriente son necesarias lo que eleva el costo energético del tratamiento (Almaguer-Busso \textit{et al} 2009, Kurniawan \textit{et al} 2006). A bajas concentraciones de Cr(VI) el proceso se vuelve ineficiente por lo que, en estos casos, se necesita un paso previo de concentración que eleva el costo total (Kurniawan \textit{et al} 2006, Xu \textit{et al} 2011). Por último, las condiciones de extrema acidez que se emplean en la reducción de Cr(VI) y la posterior neutralización para la precipitación de Cr(III) hacen que los costos aumenten por el consumo de ácidos y bases (Gagrai \textit{et al} 2013).

Tratamientos convencionales que no implican reducción de Cr(VI)

Entre los tratamientos convencionales de remoción de Cr(VI) se encuentran principalmente el uso de resinas de intercambio aniónico y de membranas de ultrafiltración. La lógica de estos tratamientos consiste en concentrar el Cr(VI) presente en el agua residual en un pequeño volumen de manera de que sea menor la cantidad de agua residual que se produzca disminuyendo los costos de su tratamiento. Además, la concentración del Cr(VI) permite que sean aplicables los métodos de reducción y precipitación descriptos anteriormente. Tenorio \textit{et al} (2001) propone la reutilización del Cr(VI) eluido de una columna de intercambio aniónico aunque el líquido tratado en sus experimentos presentó una concentración de Cr(VI) de 0,25ppm lo cual no cumple con la legislación de una gran cantidad de países para la descarga en cuerpos de agua. En el caso de los tratamientos mediante ultrafiltración, primero se hace interaccionar al Cr(VI) con polímeros de alta masa molecular de manera de que los aniones, al encontrarse unidos a compuestos de mayor masa molecular que el \textit{cut off} de la membrana, queden retenidos y puedan ser separados del líquido (Sanchez \textit{et al} 2011, Aroua \textit{et al} 2007, Jayalakashmi \textit{et al} 2012). Las ventajas de la
La tecnología de intercambio aniónico son la fácil implementación del tratamiento y la ausencia de la generación de residuos sólidos (Dobrevsky et al 1996). Las desventajas son la necesidad de un pretratamiento del agua residual previo al intercambio aniónico y los altos costos de las resinas (Ahmed et al 1998). En cuanto al método de ultrafiltración, las principales ventajas son la fácil implementación y el poco espacio requerido de los cartuchos de filtración. La gran desventaja de esta tecnología es el taponamiento o fouling de la membrana que se produce con el uso. Esto disminuye la eficacia del sistema y resulta en un aumento de los costos (Choi et al 2005).

Tratamientos no convencionales

Los tratamientos no convencionales son tecnologías que tienen limitada aplicación por encontrarse aún en fase de desarrollo. Estos tratamientos buscan resolver los problemas de alto costo y baja eficiencia de los tratamientos convencionales y son cruciales sobre todo para países en vías de desarrollo en donde las empresas no cuentan con el capital para implementar costosos sistemas de tratamiento. Entre estos tratamientos se encuentran la biosorción, la reducción fotocatalítica y la reducción biológica de Cr(VI).

Biosorción de Cr(VI)

La biosorción de Cr(VI) consiste en el uso de biomasa, generalmente inactiva, como resina de intercambio iónico. Las superficies de las células bacterianas y de hongos presentan gran cantidad de grupos funcionales que pueden ser ionizados dependiendo del pH del medio. A pH ácido, las superficies celulares presentan carga positiva, por lo que los aniones cromato quedarían retenidos a estas superficies separándose de la solución. De esta manera, se trata de reemplazar las resinas comúnmente usadas en intercambio iónico con productos naturales que son más económicos de producir. Actualmente, se está estudiando la composición de distintas superficies celulares para obtener un mayor control del proceso de biosorción. Ejemplos de aplicación de esta tecnología pueden encontrarse en Tan et al (2012) y en Ramrakhiani et al (2011).
La reducción fotocatalítica del Cr(VI) involucra el uso de semiconductores como TiO$_2$ o La$_2$Ti$_2$O$_7$ que al ser irradiados, generalmente con radiación UV, generan electrones y agujeros positivos que migran hacia la superficie del semiconductor y producen la reducción del Cr(VI) conjuntamente con la oxidación de otros contaminantes, que suele ser por lo general materia orgánica (Rengaraj et al 2007, Barrera-Díaz et al 2012). La gran ventaja de este método de tratamiento consiste en la ausencia de reactivos agregados ya que el agente reductor es generado por el efecto de la radiación sobre el semiconductor. Actualmente se está investigando el uso de semiconductores que sean excitados con radiaciones de menor energía y la inmovilización del semiconductor para facilitar su separación del agua residual a tratar (Idris et al 2010).

En la reducción biológica de Cr(VI), microorganismos catalizan la reacción de reducción utilizando enzimas específicas. Se han aislado diversos microorganismos capaces de reducir Cr(VI), desde bacterias hasta hongos, en distintas condiciones de cultivo (Guria et al 2014, Zhu et al 2008, Piñon-Castillo et al 2010, He et al 2011). El mecanismo de reducción de cromo hexavalente varía entre microorganismos aerobios y anaerobios. En aerobios se ha reportado la existencia de distintas cromatoreductas cuyo mecanismo de acción ha sido caracterizado. ChrR es una flavoproteína dimérica purificada de Pseudomonas putida MK1 que cataliza la transferencia de electrones al Cr(VI) (Park et al 2000, Ackerley et al 2004). En un primer paso, esta enzima transfiere un electrón, proveniente de NAD(P)H, al Cr(VI) generando Cr(V) que luego será transformado a Cr(III) con la transferencia de dos electrones más (Wang et al 1995). Este mecanismo de reducción en dos pasos posibilita que el Cr(V) sea reoxidado espontáneamente a Cr(VI) generando especies reactivas de oxígeno que pueden provocar daño celular (Ackerley et al 2004). YieF, en cambio, cataliza la reducción directa de Cr(VI) a Cr(III) a través de una transferencia de cuatro electrones de los cuales tres se transfieren para reducir el cromo y uno se utiliza para reducir oxígeno. De esta manera, se genera una menor cantidad de especies reactivas de oxígeno produciendo menos daño (Park et al 2002). YieF fue purificada de Escherichia coli. En microorganismos anaerobios, la actividad cromatoreductasa está asociada a la cadena de transporte de electrones, utilizando al Cr(VI)
como acceptor final de electrones (Wang 2000, Viamajala et al 2002). Se ha demostrado que los citocromos b y c están involucrados en la reducción de Cr(VI) en anaerobios (Cheung et al 2007). Otros anaerobios, los sulfato-reductores, producen H₂S como parte de su metabolismo, que actúa como agente reductor de Cr(VI) generando una transformación del cromo indirectamente (Wielinga et al 2001, Fude et al 1994). Los tratamientos de aguas residuales basados en esta tecnología consisten en contactar el agua residual a tratar con el catalizador, es decir, el microorganismo. Generalmente, el catalizador se encuentra inmovilizado de manera de poder separarlo fácilmente del agua residual para poder reutilizarlo. Se pueden distinguir dos estrategias de inmovilización: formación de biofilm y oclusión/encapsulamiento en geles poliméricos. Cuando se utiliza al biofilm como estrategia de inmovilización, se cultiva al microorganismo en biorreactores en presencia de soportes sobre los cuales los microorganismos se adhieren y proliferan. Luego, el medio de cultivo es sustituido por el agua residual a tratar que es suplementado con nutrientes de manera de no perder la actividad del biofilm. Al salir del biorreactor, después de un tiempo de residencia predeterminado, el agua residual presentará, si el sistema funcionó correctamente, una muy baja concentración de Cr(VI). En la encapsulación/oclusión en geles, el microorganismo es cultivado en sistemas en lote o lote alimentado de manera de obtener una gran cantidad de biomasa. Luego, las células son cosechadas y encapsuladas o atrapadas en el gel. La diferencia entre oclusión y encapsulamiento consiste en que en ésta última el microorganismo se encuentra confinado en un medio líquido rodeado de una matriz semipermeable porosa. En la oclusión, en cambio, el microorganismo queda inmovilizado dentro de la matriz porosa. En el tratamiento de aguas residuales que contienen Cr(VI), el catalizador, conformado por el microorganismo inmovilizado, es puesto en contacto con el agua residual a tratar, que generalmente es suplementado con un dador de electrones, para producir la reducción del Cr(VI) en un tiempo de residencia determinado. Ambas estrategias de inmovilización (biofilm y encapsulacion/oclusión) presentan ventajas y desventajas que serán discutidas en el Capítulo III. Ahmad et al (2010), Elangovan et al (2009) y Xu et al (2011) presentan algunos ejemplos de la aplicación de la reducción biológica de Cr(VI) en tratamientos de aguas residuales.
Hipótesis y objetivos
Hipótesis

En el presente trabajo se desarrolla un sistema de tratamiento basado en la reducción biológica de Cr(VI) aprovechando el potencial presente en bacterias autóctonas aisladas del río Reconquista en la provincia de Buenos Aires, Argentina. Se espera obtener un tratamiento alternativo de aguas residuales que contienen Cr(VI) que presente mayor eficiencia que los tratamientos convencionales debido a la utilización de bacterias adaptadas a las condiciones ambientales de estos procesos.

En primera instancia se establecen las condiciones óptimas de reducción biológica de Cr(VI) y se selecciona a la cepa más eficaz. En segundo lugar, se evalúa la biotransformación de Cr(VI) utilizando a la cepa seleccionada inmovilizada en distintas matrices. Por último, se utiliza el biocatalizador en un tratamiento integral de un agua residual industrial y se calculan los costos del tratamiento a escala industrial. Se evalúan además, distintas alternativas de economizar el proceso.
Objetivo general

Desarrollo tecnológico de un biocatalizador a base de células bacterianas inmovilizadas para su uso en tratamientos de agua residuales que contengan Cr(VI).

Objetivos específicos

- Explorar la capacidad de biotransformación de Cr(VI) de las cepas aisladas en medio de cultivo nutritivo a distintas concentraciones de Cr(VI).
- Determinar la capacidad de biotransformación de Cr(VI) de células en reposo de las cepas aisladas en ausencia de medio de cultivo, en soluciones buffer con presencia de dadores de electrones. Establecer el estado de crecimiento óptimo para la biotransformación de Cr(VI) de las células cosechadas.
- Determinar la concentración bacteriana y de dador de electrones óptima para la biotransformación de Cr(VI) con células en reposo.
- Fijar las condiciones óptimas de pH y temperatura para la biotransformación de Cr(VI) de la cepa más eficaz en base a los resultados anteriores.
- Estudiar la capacidad de biotransformación de Cr(VI) de células en reposo inmovilizadas en alginato de calcio y agarosa.
- Determinar el efecto de la temperatura en la biotransformación de Cr(VI) con células en reposo inmovilizadas en alginato de calcio.
- Diseñar un sistema de producción de biomasa de mayor escala en un biorreactor de 1L.
- Determinar la capacidad de reutilización del biocatalizador en un sistema de sucesivos lotes de tratamiento de un agua residual sintético y de una solución de ácido crómico con 1mM de Cr(VI), empacado en jeringas de 60mL y su aumento de escala a una columna calefaccionada de 1L.
- Evaluar la capacidad de retención de Cr(III) del biocatalizador inmovilizado en alginato de calcio.
• Desarrollar un sistema de tratamiento con una columna empaquetada con el biocatalizador inmovilizado para aguas residuales industriales reales de baja concentración de Cr(VI).
• Evaluar los costos del tratamiento propuesto y establecer alternativas para economizar el proceso.
• Determinar la capacidad de crecimiento de la cepa seleccionada en medios de cultivo a base de sustratos económicos (melaza de caña y glicerol crudo como fuente de carbono y energía y fertilizante como fuente de nitrógeno y fósforo).
• Desarrollar un sistema de tratamiento para aguas residuales de mediana concentración de Cr(VI) con células producidas a partir de un medio de cultivo económico.
• Comparar los costos del tratamiento con el costo del tratamiento químico convencional.
Referencias

• Guria MK, Guha AK, Bhattacharyya M (2014) A green chemical approach for biotransformation of Cr(VI) to Cr(III), utilizing *Fusarium* sp. MMT1 and consequent structural alteration of cell morphology. Journal of Environmental Chemical Engineering 2:424-433.

• Sanchez J, Rivas BL (2011) Cationic hydrophilic polymers coupled to ultrafiltration membranes to remove Cr(VI) from aqueous solutions. Desalination 279:338-343.

Capítulo II.
Biotransformación de Cr(VI): Optimización del proceso
Introducción

En trabajos anteriores se demostró que las cepas *Klebsiella oxytoca* P2, *Pseudomonas veronii* 2E y *Klebsiella ornithinolytica* 1P aisladas del río Reconquista (Buenos Aires) eran resistentes a Cr(VI) (Garavaglia *et al* 2010). En dichos trabajos, además, se reportó la biotransformación de Cr(VI) a Cr(III) cuando a estas bacterias se las cultivaba en medio nutritivo en presencia de K$_2$Cr$_2$O$_7$. Esta reacción se confirmó al medir en los sobrenadantes de los cultivos una disminución en la concentración de Cr(VI) mientras que la concentración de cromo total se mantenía constante. Esto descarta que la desaparición de Cr(VI) se deba a procesos de acumulación dentro de la bacteria o a fenómenos de adsorción que podrían ocurrir en la superficie bacteriana fundamentalmente a pH ácido.

En el presente capítulo se estudian las condiciones en las que las cepas aisladas anteriormente en este laboratorio son capaces de reducir Cr(VI) a Cr(III). En primer lugar se ensayó el proceso de biotransformación cuando las bacterias se encontraban en crecimiento en medio de cultivo nutritivo. La concentración de los nutrientes fue el doble que la utilizada por Garavaglia *et al* (2010) para determinar si así se aumentaba la tasa de reducción. Además se estudió la biotransformación de Cr(VI) utilizando suspensiones de células enteras en ausencia de medio de cultivo. De esta manera, se buscó simplificar el medio de reacción para facilitar la aplicación de esta tecnología a un tratamiento industrial y la recuperación del Cr(III) generado. Se determinaron las condiciones óptimas en cuanto a concentración de biomasa y de donadores de electrones que estimulen la reducción de Cr(VI). Para la cepa con la que se obtuvo los mejores rendimientos en cuanto a la tasa de reducción se determinaron, además, los valores óptimos de pH y temperatura de la reacción de biotransformación.
En el presente capítulo se persiguen los siguientes objetivos:

- Explorar la capacidad de biotransformación de Cr(VI) de las cepas aisladas en medio de cultivo nutritivo a distintas concentraciones de Cr(VI).
- Determinar la capacidad de biotransformación de Cr(VI) de células en reposo de las cepas aisladas en ausencia de medio de cultivo, en soluciones buffer con presencia de dadores de electrones. Establecer el estado de crecimiento óptimo para la biotransformación de Cr(VI) de las células cosechadas.
- Determinar la concentración bacteriana y de dador de electrones óptima para la biotransformación de Cr(VI) con células en reposo.
- Fijar las condiciones óptimas de pH y temperatura para la biotransformación de Cr(VI) de la cepa más eficaz en base a los resultados anteriores.
Desarrollo experimental

En este trabajo experimental todos los ensayos se realizaron por duplicado y repetidos oportunamente para asegurar su reproducibilidad.

1. Determinación cuantitativa de Cr(VI)

En todos los ensayos la concentración de Cr(VI) fue determinado utilizando el método de la difenilcarbazida (Ahmad et al 2010): a 1mL de muestra se le agregaron 9mL de H$_2$SO$_4$ 0,2M y 0,2mL de difenilcarbazida (DPC) 0,25% en acetona. La mezcla se dejó reposar durante 10 minutos y se midió la absorbancia a 540nm. El valor obtenido se comparó con la curva de calibración realizada con distintas concentraciones de K$_2$Cr$_2$O$_7$. (Fig. 1).

![Fig. 1: Curva de calibración de Cr(VI) por el método de la difenilcarbazida](image-url)
2. Reducción de Cr(VI) mediada por células en cultivo

Los resultados de Garavaglia et al (2010) mostraron que *Klebsiella oxytoca* P2 presentaba la mayor tasa de reducción de Cr(VI) cuando se la cultivaba en medio nutritivo en presencia de cromo hexavalente, en comparación con las cepas *Pseudomonas veronii* 2E y *Klebsiella ornithinolytica* 1P. Por este motivo se eligió a *K. oxytoca* P2 para la realización de los siguientes ensayos.

2.1. Evaluación del efecto de acostumbramiento al Cr(VI) en células de Klebsiella oxytoca P2 en la biotransformación de Cr(VI)

2.1.1 Preparación del pre-inóculo

Se inoculó a *Klebsiella oxytoca* P2 a partir de medio semi-sólido en 10mL de medio PYG (peptona 5g/L, extracto de levadura 2,5g/L y glucosa 1g/L) y se cultivó a 32°C y 120rpm en ausencia y presencia de 0,05mM Cr(VI) por 24 y 48 horas respectivamente.

2.1.2 Ensayos de reducción de Cr(VI)

El pre-inóculo se agregó a 100mL de medio fresco PYG suplementado con Cr(VI) 0,2mM y se incubó a 32°C con agitación a 120rpm. Cada dos horas se tomaron muestras de 2,5mL, se midió la DO$_{600nm}$ y se centrifugaron por 15 minutos a 6300g y 4°C. Se determinó la concentración de Cr(VI) en el sobrenadante. Como control se utilizó medio de cultivo estéril suplementado con 0,2mM de Cr(VI).
Los resultados obtenidos en estos experimentos demostraron un leve incremento en la tasa de reducción de Cr(VI) cuando al pre-inóculo se le había agregado cromo hexavalente (Fig. 2): un 80% del Cr(VI) total se redujo a Cr(III) en 24 horas en el cultivo cuyo pre-inóculo contenía Cr(VI). En cambio, en el cultivo que fue inoculado con un pre-inóculo que no contenía Cr(VI) se produjo una reducción del 66,7% en 24 horas. Además, el crecimiento en los cultivos que fueron inoculados a partir de cultivos con Cr(VI) fue levemente mayor que en los cultivos cuyo inóculo no fue cultivado en presencia de Cr(VI) aunque no se evidencia una diferencia en la velocidad específica de crecimiento que fue de 0,64 h⁻¹ (Fig. 3). Esto sugiere un efecto de acostumbramiento al Cr(VI) que posibilita una mayor resistencia al mismo y, por lo tanto, mayor crecimiento y en consecuencia una mayor tasa de reducción de Cr(VI).
2.2 Biotransformación de Cr(VI) en células en crecimiento

Se realizaron cultivos de 100mL en PYG de las cepas *Pseudomonas veronii* 2E, *Klebsiella ornithinolytica* 1P y *Klebsiella oxytoca* P2 a partir de pre-inóculos (cultivados a 32°C por 48 hs) de 10mL de cada cepa en PYG suplementado con 0,05mM de Cr(VI). Cada cepa fue cultivada en presencia de tres concentraciones de Cr(VI) diferentes: 0,05, 0,1 y 0,2mM (2,6ppm, 5,2ppm y 10,4ppm respectivamente). Estas concentraciones fueron escogidas por encontrarse por debajo de la concentración mínima inhibitoria de crecimiento de las bacterias empleadas (Garavaglia *et al* 2010). Como control se utilizó medio de cultivo estéril suplementado con cada una de las concentraciones de Cr(VI) ensayadas.

Se observó que las tres cepas fueron capaces de reducir el cromo contenido en solución a diferentes tasas (Fig. 4a, 5a y 6a). Los cultivos de *P. veronii* 2E produjeron una reducción del 82, 95, y 71% en 24 horas a concentraciones iniciales de Cr(VI) de 0,05, 0,1 y 0,2mM respectivamente. *K. oxytoca* P2 produjo una biotransformación en 24 horas del 76 y 80% a 0,1 y 0,2mM de Cr(VI) respectivamente, mientras que con 0,05mM, se produjo una transformación del 100% del Cr(VI) presente en 8 horas. *K. ornithinolytica* 1P redujo el 100% de cromo hexavalente a 0,05 y 0,1mM en 6 y 9 horas respectivamente. A una concentración inicial de Cr(VI) de 0,2mM, el porcentaje de reducción fue del 88% en 24 hs.
horas. Esta cepa fue la que presentó el mayor porcentaje de reducción de Cr(VI) y también presentó el mayor crecimiento en todas las condiciones ensayadas. Pudo observarse, además, el efecto del Cr(VI) en el crecimiento bacteriano (Fig. 4b, 5b, y 6b). *K. oxytoca* P2 no alteró su tasa de crecimiento específica al aumentar la concentración de Cr(VI) de 0,05mM a 0,1mM pero aumentó al aumentar el Cr(VI) a 0,2mM (Tabla 1). Sin embargo, la biomasa producida disminuyó con cada aumento en la concentración de Cr(VI): con 0,1mM la biomasa disminuyó al 36% mientras que con 0,2mM decayó al 4,8% considerando al 100% como la biomasa producida en presencia de 0,05mM Cr(VI). *K. ornithinolytica* 1P en cambio, mantuvo la misma producción de biomasa e incrementó la tasa de crecimiento específica con cada aumento en la concentración de Cr(VI). Por otro lado, *P. veronii* 2E tuvo un máximo de crecimiento y de tasa de crecimiento a 0,1mM Cr(VI) (ver Tabla 1). Las tasas de reducción inicial aumentaron con el aumento de la concentración inicial de Cr(VI) como era esperable para una cinética enzimática. Las mayores tasas de reducción inicial se obtuvieron con *K. oxytoca* P2 y *K. ornithinolytica* 1P (ver Tabla 1). Sin embargo, las velocidades de biotransformación obtenidas no resultaron satisfactorias para ser aplicadas en un tratamiento de aguas residuales. Por este motivo se investigó como alternativa el uso de células en reposo en lugar de células en crecimiento. Además este sistema, al independizarse del medio del cultivo, facilitará la operación del tratamiento.

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Tasa de crecimiento específica (h⁻¹)</th>
<th>Tasa de reducción inicial (mgCr(VI)/h*L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,05mM Cr(VI)</td>
<td>0,1mM Cr(VI)</td>
</tr>
<tr>
<td>2E</td>
<td>0,13</td>
<td>0,39</td>
</tr>
<tr>
<td>P2</td>
<td>0,42</td>
<td>0,42</td>
</tr>
<tr>
<td>1P</td>
<td>0,44</td>
<td>0,565</td>
</tr>
</tbody>
</table>

Tabla 1: Tasas de crecimiento y de reducción de Cr(VI) de cada cepa para cada una de las concentraciones de Cr(VI) ensayadas.
Fig. 4: a) Reducción de Cr(VI) con bacterias de *P. veronii* 2E, *K. ornithinolytica* 1P y *K. oxytoca* P2 en crecimiento con Cr(VI) 0,05mM. b) Curvas de crecimiento de las distintas cepas en presencia de Cr(VI) 0,05mM.
Fig. 5: a) Reducción de Cr(VI) con bacterias de *P. veronii* 2E, *K. ornithinolytica* 1P y *K. oxytoca* P2 en crecimiento con Cr(VI) 0,1mM. b) Curvas de crecimiento de las distintas cepas en presencia de Cr(VI) 0,1mM.
Fig. 6: a) Reducción de Cr(VI) con bacterias de *P. veronii* 2E, *K. ornithinolytica* 1P y *K. oxytox* P2 en crecimiento con Cr(VI) 0.2mM. b) Curvas de crecimiento de las distintas cepas en presencia de Cr(VI) 0.2mM.
3. Reducción de Cr(VI) con células en reposo

3.1 Influencia de la fase de crecimiento en la biotransformación de Cr(VI)

3.1.1 Obtención de biomasa en fase exponencial

Debido a que la cepa *K. oxytoca* P2 presentó las mayores tasas de reducción de Cr(VI) en el trabajo de Garavaglia *et al.* (2010) con células en crecimiento, se realizó un cultivo de esta bacteria en 100mL de PYG a 32°C y 120rpm de agitación a partir de un pre-inóculo de 10mL de *K. oxytoca* P2 en fase estacionaria cultivado en el mismo medio y en las mismas condiciones. El pre-inóculo no se realizó con el agregado de Cr(VI) para obtener una mayor cantidad de biomasa y para simplificar el procedimiento teniendo en cuenta la posible aplicación industrial de esta tecnología y dadas las leves diferencias en la tasa de reducción de Cr(VI) encontradas en 2.1.2. Las células se cosecharon estando en fase de crecimiento exponencial (5 horas de cultivo) por centrífugación a 6300g por 15 minutos, se lavaron con buffer K$_2$HPO$_4$/KH$_2$PO$_4$ pH 7 100mM y se resuspendieron en 100mL de este mismo buffer. La densidad obtenida fue de 0,8g biomasa seca/L.

3.1.2 Reducción de Cr(VI) con células en reposo cosechadas en fase exponencial

A la suspensión obtenida se la suplementó con Cr(VI) 0,2mM (10,4ppm) (la máxima concentración utilizada en los ensayos con células en crecimiento) y con dos concentraciones de un potencial dador de electrones que en este caso fue glucosa 2,4mM y 80mM. La suspensión se incubó a 32°C con agitación. Para descartar la reducción abiótica por parte de la glucosa se realizó un control que incluyó todos los componentes de la suspensión (glucosa 80mM, buffer y Cr(VI) 0,2mM) excepto las bacterias. Como controles adicionales se utilizó al buffer suplementado sólo con Cr(VI) 0,2mM y a la suspensión bacteriana suplementada con Cr(VI) en ausencia de glucosa. Se tomaron muestras cada dos horas y se midió la concentración de Cr(VI) en el sobrenadante como en 2.1.2. Para las dos concentraciones de glucosa ensayadas, se observó una reducción mínima de Cr(VI) sin diferencias significativas con los controles (Fig. 7), por lo que se ensayó posteriormente con células cosechadas cuando alcanzaron la fase estacionaria (20-24 horas de cultivo).
3.1.3 Reducción de Cr(VI) con células en reposo cosechadas en fase estacionaria

Se realizó un cultivo como en 3.1.1 y las células se cosecharon como en ese mismo apartado pero luego de 20-24 horas de cultivo. La densidad de la suspensión obtenida esta vez fue de 1,2 g biomasa seca/L. A esta suspensión se le agregó Cr(VI) en una concentración de 0,2 mM y, dados los resultados negativos obtenidos en 3.1.2, se varió la concentración de glucosa y se utilizó esta vez una concentración mínima de 9,2 mM y una máxima de 160 mM. La suspensión se incubó a 32°C con agitación. Como controles se realizaron los mismos que en el apartado 3.1.2 utilizando 160 mM de glucosa para el control de reducción abiótica. Se tomaron muestras cada 2 horas y se determinó la concentración de Cr(VI) en el sobrenadante. Se produjo una reducción del 50% del Cr(VI) en 10 horas en presencia de 160 mM de glucosa y del 40% en presencia de 9,2 mM del dador de electrones (Fig. 8). Este mayor porcentaje de reducción que el que se obtuvo con células en fase exponencial...
probablemente se deba a la mayor cantidad de biomasa con la que se trabajó con respecto al ensayo anterior y no al estadio fisiológico celular.

3.1.4 Dependencia del estadio fisiológico celular y del dador de electrones en la biotransformación de Cr(VI)

Para distinguir claramente si la fase de crecimiento en que se encontraban las bacterias inflúa en la tasa de reducción de Cr(VI), se trabajó con suspensiones de células cosechadas en fase exponencial y estacionaria que se llevaron a una misma densidad de 1,1g biomasa seca/L y se les agregó glucosa 20mM, a fin de optimizar la concentración del dador de electrones, y Cr(VI) 0,2mM. Los ensayos se realizaron a 32°C con agitación y se realizaron los mismos controles que en 3.1.2. Los resultados arrojaron que las células cosechadas en fase estacionaria redujeron un 10% más del Cr(VI) que las células en estado exponencial (Fig. 7). En total, las células cosechadas en fase estacionaria redujeron un 45% del Cr(VI) en 10 horas mientras que las células cosechadas en fase exponencial redujeron un 35% en el mismo tiempo.

Fig. 8: Reducción de Cr(VI) con células de K. oxytoca P2 en fase estacionaria con distintas concentraciones de glucosa.
Fig. 7: Reducción de Cr(VI) con células de *K. oxytoca* P2 en reposo cosechadas en fase exponencial (exp) y estacionaria (est).

Para evaluar el efecto del NADH como otra alternativa de dador de electrones se agregó en una concentración de 1mM, como descripto previamente en bibliografía (Desai *et al.* 2008), a otra suspensión obtenida como en el apartado 3.1.3 de 1,1g biomasa seca/L y 0,2mM Cr(VI). Los resultados obtenidos se ven en la Figura 8. Se obtuvo una biotransformación del 91% del Cr(VI) presente en 8 horas con las células en presencia de NADH. El dador de electrones produjo una reducción abiótica del 26,7% en 8 horas.
Fig. 8: Reducción de Cr(VI) con células de *K. oxytoca* P2 en reposo con NADH 1mM como dador de electrones

En todos los ensayos realizados hasta el momento con células en reposo, no fue posible disminuir la concentración de Cr(VI) a valores por debajo del límite permitido para la descarga de efluentes que es de 0,2ppm (0,0038mM). Sin embargo, se observó que a mayor biomasa, mayor era la tasa de reducción de Cr(VI) por lo que se decidió trabajar con suspensiones de mayor densidad bacteriana, concentrando las suspensiones obtenidas en los cultivos hasta obtener 36g biomasa seca/L.

3.2 *Obtención de biomasa concentrada*

Una vez establecidas las condiciones de trabajo para los ensayos con células en reposo de *K. oxytoca* P2 (en cuanto al estadio celular y biomasa de trabajo), se realizaron cuatro cultivos de cada una de las cepas en 100mL de PYG a 32°C y 120rpm de agitación inoculados a partir de 10mL de cultivos de cada cepa en fase estacionaria en las mismas condiciones de temperatura y agitación. Una vez que alcanzaron la fase estacionaria (24 hs), se cosecharon las células por centrifugación (15 minutos a 6300g), se lavaron con buffer
K₂HPO₄/KH₂PO₄ 100mM pH 7 y los pellets bacterianos obtenidos luego del lavado fueron conservados a -20°C hasta su uso. Al momento de su utilización, los pellets fueron descongelados, lavados nuevamente y todas las células obtenidas de los cuatro cultivos se resuspenderon en una sola solución de 50mL de buffer K₂HPO₄/KH₂PO₄ para cada cepa, concentrando 8 veces cada suspensión bacteriana con respecto al cultivo original.

3.3 Efecto de la concentración del dador de electrones en la reducción de Cr(VI)

Se suplementó a las suspensiones bacterianas (densidad final: 36 g biomasa seca/L), con Cr(VI) 1mM (52ppm) y con glucosa 80mM o 20mM o con NADH 1mM y se las incubó a 32°C con agitación. Estas concentraciones de dadores de electrones representan los valores generalmente utilizados en bibliografía (Xu et al 2011, Desai et al 2008, Zhu et al 2006). Como control se utilizó el buffer K₂HPO₄/KH₂PO₄ más el dador de electrones y Cr(VI) en ausencia de bacterias. La reducción de Cr(VI) ocurrió a una tasa mucho mayor que en los ensayos anteriores. Se verificó que para las cepas K. oxytoca P2 y K. ornithinolytica 1P la presencia de un dador de electrones es fundamental para acelerar el proceso de reducción de Cr(VI): con 80mM de glucosa se obtuvo una tasa de reducción de aproximadamente 0,21mgCr(VI)/h*g biomasa seca para ambas cepas mientras que con 20mM se obtuvo una tasa de reducción de 0,11 y 0,2 mgCr(VI)/h*g biomasa seca para P2 y 1P respectivamente. En ausencia de dador de electrones las tasas de reducción para P2 y 1P fueron de 0,02 y 0,11mgCr(VI)/h*g biomasa seca respectivamente. En cambio, la cepa P. veronii 2E pudo reducir el Cr(VI) a tasas elevadas incluso en ausencia de dadores de electrones (0,32mgCr(VI)/h*g biomasa seca en ausencia de dador de electrones y 0,34mgCr(VI)/h*g biomasa seca con 20mM de glucosa) (Fig 9 y 10). Esta cepa presentó las mayores tasas de reducción en todas las condiciones por lo que en experimentos posteriores se trabajó sólo con P. veronii 2E y con glucosa a una concentración de 20mM como dador de electrones por presentar un buen rendimiento y poseer un bajo costo en comparación con el NADH.
Fig. 9: Efecto del dador de electrones en la reducción de Cr(VI) mediada por *P. veronii* 2E, *K. ornithinolytica* 1P y *K. oxytoca* P2 (a) 1mM NADH, b) 80mM glucosa, c) sin agregado de dador de electrones, d) 20mM glucosa.
Fig. 10: Tasa de reducción de Cr(VI) de las distintas cepas en las distintas condiciones de dador de electrones ensayadas.

3.4 Biotransformación de Cr(VI) por Pseudomonas veronii 2E

3.4.1 Efecto de una mayor concentración inicial de Cr(VI)

Para establecer la capacidad reductora de *P. veronii* 2E a una concentración de Cr(VI) inicial mayor, se trabajó con suspensiones celulares obtenidas como en el apartado 3.2 a las que se suplementó con 20mM glucosa y 2,5mM Cr(VI) y se las incubó a 32°C con agitación. Se tomaron muestras periódicamente del sobrenadante y se midió la concentración de Cr(VI). Se obtuvo una reducción del 100% del Cr(VI) en 12 horas en presencia de glucosa mientras que en ausencia de este dador de electrones, en el mismo tiempo se obtuvo una reducción del 84,8% (Fig. 11). La tasa de biotransformación de Cr(VI) en presencia de glucosa fue de 0,56mg Cr(VI)/h*g biomasa seca y de 0,44mg Cr(VI)/h*g biomasa seca en ausencia de dador de electrones. Como era esperado, estas tasas de reducción fueron mayores que las obtenidas en 3.3 en donde la concentración inicial de Cr(VI) fue de 1mM.
3.4.2 Efecto de la temperatura

Para estudiar el efecto de la temperatura en la biotransformación de Cr(VI), se incubaron suspensiones bacterianas de *P. veronii* 2E (densidad 36g biomasa seca/L) suplementadas con Cr(VI) 1mM y glucosa 20mM a 20°C, 25°C, 32°C, 40°C y 50°C con agitación. Como control se utilizó al buffer K$_2$HPO$_4$/KH$_2$PO$_4$ suplementado con 20mM glucosa y 1mM Cr(VI) en ausencia de bacterias. Se obtuvo un 100% de reducción de Cr(VI) en 8 horas a todas las temperaturas excepto a 50°C (Fig. 12a). La mayor tasa de reducción se observó a 32°C y fue de 0,34mg Cr(VI)/h*g biomasa seca (Fig 12b). Además, para verificar la labilidad de la actividad biológica a la temperatura, se sometió a las células a un baño de 100°C por 10 minutos y luego se las incubó a 32°C con agitación en presencia de Cr(VI) y glucosa como en los demás ensayos. No se observó reducción de Cr(VI) con las células tratadas de esta manera.
Fig. 12: a) Efecto de la temperatura en la reducción de Cr(VI) mediada por P. veronii 2E (Pretratamiento a 100ºC: células tratadas a 100ºC por 10 minutos y luego incubadas a 32ºC) b) Tasa de reducción de Cr(VI) a distintas temperaturas.
3.4.3 Efecto del pH

Con el objeto de evaluar la influencia del pH en la biotransformación, se realizaron suspensiones de *P. veronii* 2E (36g biomasa seca/L) en las siguientes soluciones amortiguadoras:

- Buffer K$_2$HPO$_4$/KH$_2$PO$_4$ 100mM pH 7 y 8.
- Buffer MES (2-[N-morpholino]ethanesulfonic acid) 10mM pH 5,5 y 6.
- Buffer Tris (tris[hydroxymethylaminomethane])-HCl pH 9.

Las suspensiones fueron suplementadas con Cr(VI) 1mM y glucosa 20mM e incubadas a 32°C. Se tomaron muestras cada dos horas y se midió la concentración de Cr(VI) del sobrenadante.

Se logró un 100% de reducción de Cr(VI) en 6 horas a pH 7 y 8 mientras que no se observó reducción de la totalidad del cromo agregado para los pHs 5,5, 6 y 9 en el tiempo del ensayo (Fig. 13a). La mayor tasa de reducción se dio a pH 7 (0,34mg Cr(VI)/h*g biomasa seca) (Fig. 13b).
Fig. 13: a) Efecto del pH en la reducción de Cr(VI) mediada por *P. veronii* 2E b) Tasa de reducción de Cr(VI) a distintos pHs.
Discusión

La biotransformación de Cr(VI) mediada por *Pseudomonas veronii* 2E, *Klebsiella oxytoca* P2 y *Klebsiella onithinolytica* 1P en crecimiento es factible a concentraciones subtóxicas de cromo. Sin embargo, el tiempo de reducción necesario para alcanzar una concentración de Cr(VI) permitida para el vertido no es apropiado para poder implementar esta tecnología en un tratamiento de aguas residuales industriales. Dichos residuos generalmente son muy voluminosos y circulan con un caudal elevado. Una gran industria puede llegar a generar 100m3 diarios a un caudal de 5m3/h. Por lo tanto, el tratamiento debe ser rápido para no provocar una acumulación del agua residual. Distintos autores investigan el uso de bacterias en crecimiento para la biotransformación de Cr(VI) (Gnanamani et al 2010, Patra et al 2010, Dey et al 2011, Leita et al 2011) aunque en estos casos se utilizaron para la remediación de suelos o aguas contaminadas y no para el tratamiento de aguas residuales industriales.

El uso de suspensiones celulares en ausencia de medio de cultivo permite concentrar la biomasa y, en consecuencia, elevar la tasa de reducción de Cr(VI) (Zhu et al 2006). Además, la ausencia de medio de cultivo simplifica la manera de operar ya que se minimiza el agregado de materia orgánica. Sin embargo, frecuentemente es necesaria la adición de distintos compuestos que actúan como dadores de electrones que estimulan la biotransformación y, en algunos casos, son imprescindibles para que la reacción se efectúe. Desai et al (2008) reportaron que la actividad cromatoreductasa se incrementó en un 25, 21 y 14% cuando a extractos celulares de *Pseudomonas sp.* G1DM21 se los suplementó con citrato, succinato y acetato respectivamente. En cambio, no encontraron un aumento en la tasa de reducción cuando se agregó fructosa, lactosa, carbonato o glucosa. Xu et al (2011) demostraron que el acetato de sodio aumentaba la tasa de reducción de Cr(VI) 5 veces en aerobiosis y hasta 20 veces en anaerobiosis en *Pannonibacter phargmitetus* LSSE-09. Murugavelh et al (2012) estudiaron la biotransformación de cromo hexavalente en *Halomonas sp.* en células en reposo y establecieron que glucosa fue el dador de electrones óptimo. Ellos especulan que esto se debe al acostumbramiento que experimenta *Halomonas sp.* al crecer en un medio con glucosa lo que facilita la utilización de este sustrato para la reducción de Cr(VI). En el presente trabajo se observó que la cepa *Pseudomonas veronii* 2E podía reducir Cr(VI) sin el agregado de un dador de electrones. Esto probablemente se deba a la presencia de compuestos oxidables unidos a la membrana plasmática bacteriana que no
pudieron ser removidos en los diversos lavados. Schrott et al (2011) reportaron la presencia de citocromos externos en *Geobacter sulfurreducens* que acumulan electrones y se descargan una vez que aparece un acceptor de electrones. De la misma manera, *Pseudomonas veronii* 2E podría acumular electrones que fueron generados en exceso durante el crecimiento en estructuras similares a las de *Geobacter sulfurreducens* y descargarlos para la reducción de Cr(VI). Debido a que las estructuras acumuladoras de electrones se encuentran unidas a la bacteria, éstas no se pierden en los lavados. Todo esto explicaría la alta tasa de reducción obtenida con *P. veronii* 2E aún sin el agregado de un dador de electrones.

Conclusión

En el presente capítulo se establecieron las condiciones óptimas en las cuales las cepas aisladas producían la biotransformación de Cr(VI). Se demostró que la concentración de la biomasa era el factor fundamental para incrementar la tasa de reducción y por tal motivo se estableció que la mejor manera de operar era con suspensiones celulares concentradas (a una densidad de 36g/l) en ausencia de medio de cultivo en lugar de utilizar bacterias en crecimiento. De esta manera, surgió que en presencia de glucosa como dador de electrones, *P. veronii* 2E era la cepa reductora de Cr(VI) más eficaz siendo la concentración óptima 20mM. Por lo tanto, se trabajó con esta cepa para determinar las condiciones óptimas de pH y temperatura de la reacción de reducción de Cr(VI). Los valores óptimos de pH y temperatura fueron 7 y 32°C respectivamente. Los resultados obtenidos en los experimentos descriptos en este capítulo permitieron optimizar los parámetros de trabajo para poder desarrollar un biocatalizador que pueda ser implementado en tratamientos de aguas residuales que contengan Cr(VI).
Referencias

• Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium (VI) reductase of *Pseudomonas ambigua* G-1: a Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). Journal of Bacteriology 174:5340-5345.

Capítulo III.
Inmovilización de *Pseudomonas veronii* 2E aplicada a tratamientos de aguas residuales que contienen Cr(VI)
Introducción

El uso de catalizadores en distintas reacciones en la industria siempre planteó la necesidad de separar fácilmente el catalizador del medio de reacción para que pueda ser reutilizado. Para esto, distintas técnicas de inmovilización se han desarrollado, sobre todo desde que se comenzaron a usar enzimas que, al ser solubles en el medio de reacción, sería muy difícil su recuperación si no se inmovilizaran. Esto también se aplica a microorganismos que, aunque no se disuelvan en el medio de reacción, son difíciles de recuperar. Como se vio en el Capítulo I, existen dos estrategias de inmovilización de microorganismos: desarrollo de biofilm o encapsulamiento/oclusión. La inmovilización por desarrollo de biofilm permite que el catalizador (microorganismo) se regenere continuamente al agregar nutrientes al líquido a tratar. Sin embargo, la principal desventaja de este método radica en la dificultad de generar un biofilm, que suele tomar días en desarrollarse completamente. Además, durante el tratamiento debe haber un continuo suministro de nutrientes y oxígeno para que el biofilm no pierda actividad lo que complica el proceso. Otro punto en contra es que el biofilm puede no presentar una alta densidad de células por lo que los tiempos de residencia del tratamiento se incrementan (Pan et al 2014, Sahinkaya et al 2012). La inmovilización por oclusión/encapsulamiento luego de cosechadas las células, en cambio, es de simple aplicación y permite inmovilizar suspensiones celulares de alta densidad. Una vez inmovilizado, el microorganismo se encuentra en un ambiente protegido lo cual aumenta la vida útil del catalizador aunque ésta es menor que en el caso del biofilm. Una desventaja del método de oclusión/encapsulamiento es que los reactivos deben atravesar la estructura de la matriz para llegar al catalizador lo que aumenta el tiempo del tratamiento, aunque, al utilizar altas densidades celulares, este tiempo es menor que en el caso de que se utilicen biofilms (Xu et al 2011).

En el presente capítulo, se emplea una estrategia de inmovilización de la cepa Pseudomonas veronii 2E por oclusión en alginato de calcio y en agarosa. El alginato es un polímero producido por algas marrones y bacterias cuyos monómeros son el ácido α-L-gulurónico y el ácido β-D-manurónico que se unen linealmente por uniones 1-4 (Pawar et al 2012, Paques et al 2014). En contacto con cationes polivalentes, el co-polímero de alginato de calcio se entrecruza formando una red tridimensional porosa (hidrogel) (Fig. 1) dentro del cual pueden atraparse microorganismos, inmovilizándolos.
La agarosa es un polisacárido lineal extraído de algas rojas compuesto por unidades repetitivas de agarobiosa que es un disacárido formado por D-galactosa y por 3,6-anhidro-L-galactopiranosa (Zamora-Mora et al 2014, Le Goff et al 2014) (Fig. 2).

La agarosa forma geles cuando se encuentra en solución acuosa dependiendo de la concentración y de la temperatura a la que se encuentra la solución. A altas temperaturas la agarosa adopta en solución una estructura de random coil y al enfriarse entre los 60°C y 40°C adquiere una conformación helicoidal que tiende a agregarse formando una red tridimensional rígida y estable, es decir, un gel (Le Goff et al 2014, Tako et al 1988, Fernández et al 2009, Mohammed et al 1998, Deszczynski et al 2003, Matsuo et al 2002) (Fig. 3).

Fig. 1: Formación del gel de alginato por la interacción con cationes Ca$^{2+}$ (adaptado de Paques et al 2014).

Fig. 2: Estructura química de la agarosa (adaptado de Dahmani et al 2003)

D-galactosa 3,6-anhidro-galactopiranosasa
En el presente capítulo se persiguen los siguientes objetivos:

- Estudiar la capacidad de biotransformación de Cr(VI) de células en reposo inmovilizadas en alginato de calcio y agarosa.
- Determinar el efecto de la temperatura en la biotransformación de Cr(VI) con células en reposo inmovilizadas en alginato de calcio.
- Diseñar un sistema de producción de biomasa de mayor escala en un biorreactor de 1L.
- Determinar la capacidad de reutilización del biocatalizador en un sistema de sucesivos lotes de tratamiento de un agua residual sintético y de una solución proveniente de un baño de piezas metálicas de segundo enjuague de ácido crómico con 1mM de Cr(VI), empacado en jeringas de 60mL y su aumento de escala a una columna calefaccionada de 1L.
- Evaluar la capacidad de remoción de Cr(III) del biocatalizador inmovilizado en alginato de calcio.
Desarrollo experimental

En este trabajo experimental todos los ensayos se realizaron por duplicado y repetidos oportunamente para asegurar su reproducibilidad.

1. Reducción de Cr(VI) con células inmovilizadas en alginato de calcio y en agarosa

1.1 Inmovilización en alginato de calcio

Para proceder a la inmovilización por oclusión, las células de P. veronii 2E cosechadas como en el apartado 3.2 del Capítulo II fueron resuspendidas en 25mL de agua destilada obteniendo así un suspensión de 72g biomasa seca/L. La suspensión se mezcló con un mismo volumen de alginato de sodio 1,5%m/v y la mezcla se goteó sobre una solución a 4°C de CaCl$_2$ 0,2M utilizando una jeringa de 60mL. Las esferas de alginato formadas, conteniendo a las bacterias en una concentración celular de 36g/L, reposaron en esta solución por una hora a 4°C, luego fueron lavadas con agua destilada y utilizadas inmediatamente. El volumen aparente de esferas fue de 50mL. Como control se produjeron esferas de alginato de calcio libres de células siguiendo el mismo procedimiento mezclando agua destilada con la solución de alginato de sodio en lugar de la suspensión celular.

1.2 Inmovilización en agarosa

La suspensión de P. veronii 2E de 25 mL y 72g biomasa seca/L de densidad fue mezclada con una solución de 25mL de agarosa al 2,2% a 45°C en una caja de petri de 9cm de diámetro. La mezcla se dejó enfriar hasta que gelificó completamente dando una concentración celular final de 36g/L y un volumen aparente de 50mL. La mezcla sólida se cortó en trozos cúbicos de 2cm de lado y se lavaron con agua destilada para ser utilizados inmediatamente. Como control, se utilizaron trozos cúbicos de agarosa producidos con el mismo procedimiento mezclando agua destilada con la solución de agarosa en lugar de la suspensión celular.
1.3 Reducción de Cr(VI) con células inmovilizadas

Las células inmovilizadas en alginato de calcio y en agarosa (volumen aparente 50mL) fueron suspendidas en 50mL de una solución de 1mM Cr(VI) y 20mM glucosa (según las condiciones establecidas por los resultados del Capítulo II) e incubadas a 32°C con agitación. Cada dos horas se tomaron muestras de los sobrenadantes y se determinó la concentración de Cr(VI) como en la sección 1 del Capítulo II. La tasa de reducción tanto para el catalizador inmovilizado en alginato de calcio como en agarosa fue muy baja al compararla con la obtenida con células libres obteniendo una reducción de Cr(VI) del 48,9% en 6 horas para la bacteria en alginato de calcio y del 55,4% en el mismo tiempo para las bacterias inmovilizadas en agarosa (Fig. 4a). Se procedió entonces a suspender a las células inmovilizadas en 25mL de la solución de cromo hexavalente y glucosa de manera de incrementar la relación volumétrica catalizador-Cr(VI) a 2:1 en lugar de 1:1 y así acelerar la reacción de reducción (Fig. 4b).

![Fig. 4a: Reducción de Cr(VI) con células inmovilizadas en alginato y agarosa en 50mL de solución](image-url)
Pudo observarse que el aumento en la relación catalizador-Cr(VI) produjo el efecto esperado de aceleración de la reacción al incrementar los contactos entre el catalizador y el Cr(VI). El porcentaje de Cr(VI) reducido en 8 horas fue del 100% para las bacterias inmovilizadas en alginato de calcio y del 95,5% para las inmovilizadas en agarosa. Se observa, además, el proceso de ingreso del Cr(VI) en el alginato de calcio y la agarosa en los controles libres de células que explica la disminución de la concentración de Cr(VI) en ausencia del catalizador. Cabe destacar que esta disminución no es ocasionada por reducción abiótica ya que el Cr(VI) pudo ser recuperado en sucesivos lavados con agua destilada. En base a estos resultados se eligió al alginato de calcio como matriz de inmovilización para futuros experimentos por ser más económico y porque el proceso de gelificación, al ser independiente de la temperatura puede ser controlado con mayor facilidad.
1.4 Optimización de la temperatura en la reducción de Cr(VI) con células inmovilizadas

Las células inmovilizadas (50mL de volumen aparente) en alginato de calcio como en 1.1 se suspendieron en 25 mL de una solución de Cr(VI) 1mM y glucosa 20mM y se incubaron a 20ºC, 25ºC, 32ºC, 40ºC y 50ºC. Cada dos horas se tomaron muestras del sobrenadante y se determinó la concentración de Cr(VI). Se observó que la mayor tasa de reducción se dio a 40ºC obteniendo un 100% de reducción en 4 horas, mientras que a 20ºC, 25ºC y 32ºC el tiempo de reducción para lograr una reducción del 100% se vio incrementado en comparación con el tiempo obtenido usando células libres. A 32°C la biotransformación total del Cr(VI) se produjo en 5-6 horas con células libres mientras que con células inmovilizadas el 100% de reducción se obtuvo en 8 horas. A 50ºC se observó pérdida de actividad como se había observado en células libres (Fig. 5).

Fig. 5: Reducción de Cr(VI) con células inmovilizadas incubadas a distintas temperaturas
1.5 Reducción de Cr(VI) en sistemas en lote

Como una aproximación a un tratamiento de aguas residuales, se evaluó la capacidad de reuso del catalizador. Para esto, se empaquetaron las células inmovilizadas (volumen aparente de 50mL) en jeringas de 60mL y se pusieron en contacto con 25mL de una solución de Cr(VI) 1mM y glucosa 20mM en agua. Como control se utilizaron esferas de alginato libres de células como en 1.1. Se determinó la concentración de Cr(VI) cada dos horas y cuando se alcanzó una reducción del 100% del cromo se renovó la solución. Durante las primeras 24 horas el sistema conservó la eficiencia y se produjo reducción total del cromo hexavalente durante los primeros tres lotes en ocho horas (Fig. 6).

Fig 6: Biotransformación de Cr(VI) en lotes secuenciados en mini-columnas de tratamiento de 60mL.
2. Aumento de escala del proceso de biotransformación de Cr(VI): aproximación al tratamiento de aguas residuales con contenido de Cr(VI)

2.1 Obtención de biomasa

Se diseñó un biorreactor de 1L de capacidad utilizando un erlenmeyer de 3L con entrada para aire y medio de cultivo y salida de gases y de cultivo bacteriano. El aire se introdujo en el biorreactor con un aireador a través de un filtro de ésteres de celulosa de 0,45µm de diámetro de poro para esterilizarlo (Fig. 7). La agitación fue provista por un agitador magnético y la temperatura de trabajo fue de 28°C. Un litro de medio de cultivo compuesto por 8g/L de caldo nutritivo (5g/L de peptona de carne y 3g/L de extracto de levadura) y 1g/L de glucosa se inoculó con 100mL de un cultivo en fase estacionaria obtenido luego de 24 horas de cultivo de P. veronii 2E en el mismo medio a 32°C y 120rpm de agitación. Luego de 20 horas de cultivo, se cosechó 1L de cultivo dejando 100mL en el biorreactor y se agregó otro litro de medio fresco. Este procedimiento se repitió 10 veces. Las células cosechadas fueron lavadas con agua y los pellets obtenidos se conservaron a -20°C hasta su utilización.

Fig. 7: Biorreactor utilizado para la obtención de la biomasa a inmovilizar.
La Figura 8 muestra la cinética de crecimiento bacteriano obtenida en el cultivo de 1L de *P. veronii* 2E en el biorreactor y en el cultivo de 100mL realizado en un *erlenmeyer* de 500mL con 120rpm de agitación y a 32°C. Puede observarse el mayor crecimiento obtenido en el biorreactor probablemente producto de una mayor tasa de transferencia de oxígeno que la que se obtiene en el cultivo en *erlenmeyer*. Esto posibilitaría que en el biorreactor, el cultivo no se limite en oxígeno. La velocidad máxima específica de crecimiento ($\mu_{\text{máx}}$) fue de 0,4h$^{-1}$.

Fig. 8: Crecimiento bacteriano en a) cultivo de 100mL de *P. veronii* 2E en *erlenmeyer* de 500mL y b) en cultivo de 1L en biorreactor
2.2 Inmovilización celular

Se obtuvieron pellets bacterianos a partir de 10 cultivos de 1L, se lavaron con agua y se suspendieron en 500mL de agua. Esta suspensión (47g biomasa seca/L) se mezcló con 500mL de alginato de sodio 1,5%m/v y se goteó sobre una solución de CaCl$_2$ 0,2M (Fig. 9). Las células inmovilizadas se mantuvieron en esta solución por 1 hora a 4°C, luego se lavaron y se las suspendió en agua para su uso inmediato. El volumen aparente del catalizador inmovilizado fue de 1L y la concentración celular final fue de 23,5g/L.

2.3 Biotransformación de Cr(VI) por células inmovilizadas

Las células inmovilizadas (masa: 530g, volumen aparente 1L) se empaquetaron en una columna de 1L de capacidad (Fig. 10) y se pusieron en contacto con 300mL de una solución de Cr(VI) 1mM y glucosa 20mM o con una dilución de 1:215 de ácido crómico proveniente de un baño de segundo enjuague de piezas metálicas neutralizado previamente con NaOH 6M (ver composición en el apéndice A). Se tomaron muestras cada dos horas a
32°C y se determinó la concentración de Cr(VI) en el sobrenadante. Con el objeto de homogeneizar, a cada hora el líquido en la columna era recirculado con la ayuda de una bomba peristáltica. Una vez que no se detectó Cr(VI) en el líquido se renovó la solución de Cr(VI). Se observó una pérdida de actividad reductora con cada agregado de Cr(VI) aumentando, en cada lote, el tiempo necesario para lograr una reducción del 100% del Cr(VI). Se obtuvo un 100% de remoción de cromo en los primeros cuatro lotes tanto para la solución de ácido crómico como para la solución de Cr(VI) sintética (Fig. 11 y 12). Para la solución sintética, la reducción total del Cr(VI) se produjo en tres horas en los dos primeros lotes. En el tercer lote se necesitaron 6 horas para lograr este mismo porcentaje de reducción mientras que en el cuarto se necesitaron 10 horas. Para la solución de ácido crómico, los dos primeros lotes consumieron tres horas mientras que el tercero y el cuarto necesitaron 3,5 y 5 horas respectivamente para alcanzar un porcentaje de reducción del 100%.
Fig. 11: Biotransformación de Cr(VI) en lotes secuenciados de 300mL de una solución de Cr(VI) y glucosa.

Fig. 12: Biotransformación de Cr(VI) en lotes secuenciados de 300mL de una dilución de ácido crómico proveniente de un baño de segundo enjuague de piezas metálicas.
En total, se pudieron tratar 70,57mg de Cr(VI) antes de que se registre una pérdida de actividad reductora tal que no permita una reducción del 100% del Cr(VI) en 8 horas para el caso del tratamiento de la solución de ácido crómico.

En la Tabla 1 se encuentran detallados los resultados del tratamiento por cada lote para el caso de la solución de ácido crómico.

<table>
<thead>
<tr>
<th>Lote</th>
<th>Cr(VI) tratado (mg)</th>
<th>Cr(VI) tratado total (mg)</th>
<th>Actividad reductora(mgCr(VI)/h)</th>
<th>% actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16,89</td>
<td>16,89</td>
<td>5,63</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>18,03</td>
<td>34,92</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>18,1</td>
<td>53,02</td>
<td>5,17</td>
<td>86,2</td>
</tr>
<tr>
<td>4</td>
<td>17,55</td>
<td>70,57</td>
<td>3,5</td>
<td>58,3</td>
</tr>
<tr>
<td>5</td>
<td>17,9</td>
<td>88,47</td>
<td>2,24</td>
<td>37,3</td>
</tr>
</tbody>
</table>

Tabla 1: Detalles del tratamiento de una solución de ácido crómico en lotes secuenciados.

La actividad reductora fue medida como el Cr(VI) tratado en cada lote por unidad de tiempo del tratamiento. En la Figura 13 puede observarse que la pérdida de actividad se empezó a producir a partir de los 35mg de Cr(VI) tratados y que con cada 1mg de Cr(VI) tratado después de los 53 mg, se produjo una pérdida de la actividad efectiva del 1.7%.

Fig. 13: Disminución de la actividad a medida que transcurre el tratamiento. La pendiente de la recta representa la pérdida de actividad con cada 1 mg de Cr(VI) tratado luego de tratar 53mg y su valor es 1,7.
3. Retención de Cr(III) en alginato de calcio con y sin células ocluidas

De manera de establecer un posible destino del Cr(III) generado luego de la reducción del Cr(VI), se realizaron ensayos de retención de Cr(III) utilizando al catalizador inmovilizado. Para esto, una suspensión bacteriana de 50mL y densidad 50,5g/L se mezcló con el mismo volumen de una solución de alginato de sodio al 1% m/v. La mezcla se goteó sobre una solución a 4°C de CaCl$_2$ 0,05M. Las bacterias inmovilizadas reposaron durante 15 minutos en esta solución a 4°C. Luego fueron lavadas con agua destilada y secadas al aire a temperatura ambiente. Los ensayos de remoción se realizaron suspendiendo 10g del biocatalizador en 10mL de una solución de Cr(NO$_3$)$_3$ a distintas concentraciones de Cr(III) (250, 500, 1000, 2000, 5000, 7000 y 10000 ppm) y pH 3 para evitar la precipitación del Cr(III). La suspensión se incubó en agitación a 32°C por 24 horas. Luego de este periodo, la concentración de Cr(III) fue medida en el sobrenadante oxidando el Cr(III) remanente y midiendo la concentración de Cr(VI) por el método de la difenilcarbazida. Este método fue utilizado siempre que se determinó la concentración de Cr(III) en los experimentos siguientes. El procedimiento fue descripto por Souza et al (2006). Brevemente, el sobrenadante fue llevado a pH 12, se le agregó H$_2$O$_2$ a una concentración final de 1,4 M y se incubó a 60°C por 40 minutos para la oxidación completa del Cr(VI) a Cr(III). El Cr(VI) obtenido en la solución fue determinado como fue descripto por Patra et al (2010): 1mL de muestra fuemezclado con 1mL de H$_2$SO$_4$ 1N y 0,2mL de solución de DPC preparada disolviendo 4g de ácido ftálico y 0,25g de 1,5-difenilcarbazida en etanol 96%. La absorbancia de la solución se midió a 540nm y se comparó con una curva de calibración para determinar la concentración del Cr(VI) (Fig. 14). Este método fue utilizado en todas las determinaciones de Cr(VI) de los experimentos siguientes.
La capacidad de remoción de Cr(III) del biocatalizador fue determinada mediante el siguiente cálculo:

\[q = (C_0 - C) \times \frac{V}{m} \]

En donde

- \(q \): Capacidad de retención (mg Cr(III)/g biocatalizador)
- \(C_0 \): Concentración inicial de Cr(III) (mg/L)
- \(C \): Concentración final de Cr(III) (mg/L)
- \(V \): Volumen (L)
- \(m \): Masa del biocatalizador (g)
La Figura 15 describe los resultados obtenidos:

![Gráfica de remoción de Cr(III) por el biocatalizador a diferentes concentraciones en el equilibrio de Cr(III).](image)

Con las concentraciones de Cr(III) usadas no fue posible alcanzar la capacidad máxima de remoción del biocatalizador. La misma debe ser mayor a 3mgCr(III)/g biocatalizador. Si se tiene en cuenta que en los ensayos de biotransformación de Cr(VI) realizados en 2.3 se utilizaron 530g del biocatalizador y se trataron 88,47mg de Cr(VI), todo el Cr(III) generado podría removerse por el biocatalizador si se liberara al sobrenadante. Además, se calculó el porcentaje de Cr(III) que es retenido en la matriz de alginato libre de células y se lo comparó con el porcentaje de remoción cuando se utilizó al alginato de calcio con células inmovilizadas. Las esferas de alginato de calcio libres de células se produjeron mezclando una solución 20mL de alginato de sodio 1% m/v con un mismo volumen de agua destilada. La mezcla se goteó sobre una solución de CaCl₂ 0,05M a 4°C. Las esferas reposaron en esta solución a 4°C por 15 minutos, luego fueron lavadas con agua destilada y secadas al aire. Pudo observarse que la matriz de alginato de calcio fue capaz de remover una importante cantidad de Cr(III) (87,3%) cuando a 10g de esferas se las incubó con 10mL de una solución de Cr(NO₃)₃ con 500ppm de Cr(III) por 24 horas a 32°C. Las esferas de alginato de calcio conteniendo células de *P. veronii* 2E presentaron una remoción de Cr(III) del 98,3% cuando se las incubó en las mismas condiciones (Fig. 16).
Fig. 16: Remoción de Cr(III) con esferas de alginato de calcio libres de células y con células inmovilizadas cuando se las incubó en presencia de 500ppm de Cr(III).
Discusión

La inmovilización bacteriana es una herramienta muy útil cuando se trabaja con células a modo de biocatalizadores ya que permite su fácil separación del medio de reacción. En el presente trabajo se decidió por una inmovilización por oclusión ya que es más sencilla que la inmovilización por biofilm y permitió inmovilizar densidades celulares mayores que las que se encuentran en un biofilm. Las bacterias inmovilizadas tanto en alginato de calcio como en agarosa presentaron tasas de reducción de Cr(VI) aceptables pero, como se mencionó anteriormente, por cuestiones de costos y por simplicidad de manejo se prefirió al alginato de calcio como matriz de inmovilización. Incluso, Britos et al (2012) determinaron algunas deficiencias al usar agarosa para inmovilizar una cepa de Lactobacillus animalis lo que inclinó la balanza más a favor del alginato de calcio. Las tasas de reducción observadas al utilizar células inmovilizadas fueron menores que las obtenidas con células libres. Esto se debe a que la bacteria, o sea el catalizador, se encuentra dentro de una estructura que el sustrato, el Cr(VI), debe atravesar para que se produzca el contacto catalizador-sustrato y se efectúe la reacción. Esto hace que se introduzca un nuevo paso limitante en la reacción, y por lo tanto, el proceso global se torna más lento. Al aumentar la temperatura, la velocidad de difusión de los sustratos también aumenta, por eso los ensayos de biotransformación con células inmovilizadas mostraron un aumento en la tasa de reducción al aumentar la temperatura. La temperatura óptima de biotransformación de Cr(VI) de P. veronii 2E es de 32°C, como se desprendió de los experimentos realizados en el Capítulo II. Sin embargo, con la bacteria inmovilizada se obtuvo una mayor tasa de reducción a 40°C, indicando que el paso que gobierna la velocidad de la reacción en este caso es el de difusión de los sustratos a través de la capa de alginato de calcio. No obstante, de manera de reducir el costo energético del proceso, se decidió trabajar a 32°C. Xu et al (2011) describe cómo el grosor de la capa de alginato de calcio influye en la velocidad de la reacción de reducción y demuestran que a mayor grosor, menor es la tasa de reducción. La concentración de la solución gelificante de CaCl₂ y el tiempo de incubación que las esferas permanecen en esta solución controla el grosor de la capa de alginato de calcio. Esta limitación de la técnica de inmovilización es su principal desventaja como ya se mencionó anteriormente.

La capacidad de reutilización de un biocatalizador es muy importante porque determina la vida útil del mismo. Se observó en los ensayos a mayor escala (en columna de 1L) que el rendimiento fue mayor que en los ensayos a menor escala (en jeringa de 60mL).
Esto probablemente se deba a que en los ensayos a mayor escala la relación entre el volumen aparente del catalizador (1000mL) y la solución de Cr(VI) (300mL) era de 3,3:1 mientras que en los ensayos a menor escala esa relación fue de 2:1 (50mL de volumen aparente del catalizador y 25mL de solución de Cr(VI)). Varios autores determinaron la capacidad de reutilización de diversas cepas bacterianas inmovilizadas en distintas matrices y bajo distintas condiciones de operación. Konovalova et al (2003) estudiaron la biotransformación de Cr(VI) en células de Pseudomonas inmovilizadas en agar-agar. Este biocatalizador pudo reducir 20mg/L de Cr(VI) durante 6 lotes consecutivos. Ellos deducen que la pérdida de actividad cromato reductasa se debe a la acumulación de metabolitos tóxicos dentro de la matriz de inmovilización. Zhu et al (2008) lograron reducir hasta 8 veces consecutivas una carga de Cr(VI) de 7mM utilizando células libres de Achromobacter en condiciones de anaerobiosis. La pérdida de actividad la atribuyen al consumo del dador de electrones ya que observan un reestablecimiento de la capacidad de reducción de Cr(VI) al agregar más lactato como dador de electrones. Xu et al (2011) utilizaron repetidamente a Pannonibacter phragmitetus inmovilizada en alginato de calcio y observaron una pérdida en la eficiencia de reducción de Cr(VI) del 22,67% al octavo lote. Ge et al (2013) utilizaron a células libres de Pseudochromobactrum sp. y de Proteus sp. durante 3 lotes a una concentración de Cr(VI) de 20mg/L cada uno observando una pérdida gradual de la actividad cromatoreductasa. Estos dos últimos autores no ofrecen posibles explicaciones acerca de la pérdida de actividad observada. En el presente estudio se logró reutilizar a la bacteria P. veronii 2E durante cuatro lotes consecutivos de 1mM de Cr(VI). Se observó pérdida de actividad reductora con cada lote. La actividad tóxica del Cr(VI), que se manifiesta durante el proceso de reducción al generar radicales libres que dañan al ADN de las bacterias, volviéndolas inviables, puede ser motivo de la pérdida de la actividad cromatoreductasa. Además, la acumulación de Cr(III) dentro de las bacterias puede generar efectos tóxicos en las mismas contribuyendo en la disminución de la eficiencia de reducción.

La adsorción de Cr(III) ha sido documentada en diversos estudios. Garcia-Reyes et al (2010) utilizaron agro-residuos como material adsorbente de Cr(III) logrando una capacidad máxima de 28,7mg Cr(III)/g a pH 4. Ibañez et al (2004) usaron esferas de alginato de calcio protonadas alcanzando una capacidad máxima de adsorción de 112mg Cr(III)/g a pH 4,5. En el presente trabajo, la capacidad máxima de remoción alcanzada fue suficiente para retener todo el Cr(III) generado por la biotransformación de Cr(VI) en los diferentes ensayos, en caso de que el Cr(III) se encuentre en el sobrenadante.
Conclusión

En el presente capítulo se utilizó a *Pseudomonas veronii* 2E inmovilizada en alginato de calcio y en agarosa como catalizador en la reducción de Cr(VI). El alginato de calcio se destacó como la mejor matriz de inmovilización por su simplicidad de aplicación y su bajo costo. La velocidad global de la reacción disminuyó al utilizar células inmovilizadas ya que se introdujo un nuevo paso limitante determinante de la velocidad de reacción: la difusión de los sustratos a través de la matriz de inmovilización. Este fenómeno difusivo quedó evidenciado en los experimentos de reducción realizados con células inmovilizadas a distintas temperaturas (20, 25, 32, 40 y 50°C). Se realizaron, además, ampliaciones de escala tanto en el proceso de producción de biomasa como en el proceso de inmovilización y reducción de Cr(VI). Se evaluó la capacidad de reutilización del biocatalizador en solución sintética de Cr(VI) y en un baño de enjuague utilizado en la industria y se observó una pérdida gradual de la actividad cromatoreductasa durante 5 lotes consecutivos. Además, se determinó la capacidad de remoción de Cr(III) del biocatalizador para establecer el posible destino del Cr(III) generado por la reducción de Cr(VI).
Referencias
Capítulo IV.
Tratamiento de aguas residuales industriales y optimización de costos de producción de biomasa y tratamiento
Introducción

Los tratamientos convencionales de aguas residuales que contienen Cr(VI) poseen grandes desventajas como ya se mencionaron en la introducción de este trabajo. Los resultados obtenidos, detallados en los capítulos anteriores, con el uso de bacterias inmovilizadas para el tratamiento de aguas residuales con Cr(VI), permitieron desarrollar un sistema alternativo de tratamiento. De esta manera se busca reemplazar los tratamientos convencionales por otro más eficiente, económico y ambientalmente amigable.

Uno de los parámetros a definir en un tratamiento de aguas es el tiempo de residencia hidráulico que es el tiempo que el líquido debe tratarse para alcanzar la calidad deseada. Este tiempo debe ser el menor posible para garantizar un tratamiento eficiente. Si bien una gran concentración del catalizador y de los sustratos garantizan un tiempo de retención bajo, también implican mayores costos de producción y consumo de reactivos. Por lo tanto, es necesario optimizar el tratamiento de manera de obtener un bajo tiempo de retención con la menor cantidad de catalizador y reactivos necesarios.

El costo total del tratamiento es otro importante parámetro a definir. Dentro de esta categoría se contemplan el consumo de reactivos, de energía, Inversión en infraestructura, el costo de la disposición final de residuos y la mano de obra.

En la producción de un biotratamiento como el que se desarrolla en la presente tesis se diferencian claramente dos tipos de costos: el costo asociado a la producción de biomasa y el costo asociado a la implementación del tratamiento. Para economizar la producción de biomasa se busca sustituir el medio de cultivo utilizado comúnmente en investigación por otro cuyos ingredientes sean residuos industriales o subproductos de poco valor comercial. Por ejemplo, Ahmad et al (2010) utilizan residuo líquido de ananá para producir el biofilm para el tratamiento de aguas residuales con Cr(VI) y Fusconi et al (2009) utilizan melaza de caña de azúcar para producir exopolisacáridos de una cepa de Gordonia polysoprenivorans. Martone et al (2005) utilizan un hidrolizado de proteínas de merluza como fuente de nitrógeno económica proveniente del residuo de la industria del fileteado de pescado.

En el presente capítulo se emplea a la bacteria Pseudomonas veronii 2E en un tratamiento de aguas residuales reales provenientes de una empresa productora de piezas de grifería. En primera instancia, se diseña el tratamiento de manera de que la concentración de Cr(VI) en el efluente no supere los 0,1ppm, que es la máxima concentración permisible en efluentes aptos para el vertido en Estados Unidos. Alcanzar esta concentración de Cr(VI) en
los efluentes es muy importante para las empresas nacionales que quieran entrar en mercados exteriores como Europa o Estados Unidos. En segunda instancia, se evalúan los costos del tratamiento y se exploran alternativas para reducir el mismo. La estrategia empleada para disminuir los costos de producción fue la de reemplazar al medio de cultivo utilizado, compuesto por glucosa, peptona de caseína y extracto de levadura, por otros con glicerol o melaza de caña como fuente de carbono y energía y fertilizante como fuente de nitrógeno y otros nutrientes (Apéndices B y C). La melaza de caña es un subproducto de la producción de azúcar compuesta de diferentes tipos de azúcares, aminoácidos y vitaminas. El glicerol utilizado en el presente trabajo es el glicerol ácido proveniente de la fabricación de biodiesel. Se estima que cada 10kg de biodiesel, se produce 1kg de glicerol crudo (Santibáñez et al. 2011, Hu et al. 2012). El glicerol ácido se obtiene luego del primer paso en el proceso de purificación del glicerol y su producción es muy económica. El proceso de purificación total del glicerol, en cambio, es muy costoso, sobre todo para medianos y pequeños productores de biodiesel (Santibáñez et al. 2012, Manosak et al. 2011). Además, la producción de biodiesel se encuentra en notable aumento por lo que se origina un excedente de glicerol crudo que las empresas, muchas veces, deben descartar como residuo (Pott et al. 2014). Por lo tanto, la utilización de glicerol ácido para la producción de biomasa, además de ser económica, proporciona una solución al problema del exceso de glicerol crudo producido durante la producción de biodiesel.

En el presente capítulo se persiguen los siguientes objetivos:

- Desarrollar un sistema de tratamiento con una columna empaquetada con el biocatalizador inmovilizado para aguas residuales industriales reales de baja concentración de Cr(VI).
- Evaluar los costos del tratamiento propuesto y establecer alternativas para economizar el proceso.
- Determinar la capacidad de crecimiento de la cepa seleccionada en medios de cultivo a base de sustratos económicos (melaza de caña y glicerol crudo como fuente de carbono y energía y fertilizante como fuente de nitrógeno y fósforo).
- Desarrollar un sistema de tratamiento para aguas residuales de mediana concentración de Cr(VI) con células producidas a partir de un medio de cultivo económico.
Desarrollo experimental

En este trabajo experimental todos los ensayos se realizaron por duplicado y repetidos oportunamente para asegurar su reproducibilidad.

1. Diseño del tratamiento de aguas residuales industriales

Las células de *Pseudomonas veronii* 2E fueron cosechadas a partir de 10 cultivos en lote de 1L en caldo nutritivo (5g/L peptona de carne, 3g/L extracto de levadura y 1g/L glucosa) utilizando el biorreactor descripto en el apartado 2.1 del Capítulo III. Las bacterias fueron inmovilizadas según el apartado 2.2 del capítulo anterior utilizando una concentración final de alginato de sodio y de CaCl$_2$ de 0,5%m/v y 0,05M respectivamente y un tiempo de residencia en la solución de CaCl$_2$ de 15 minutos. Estas concentraciones y este tiempo de residencia fueron elegidas para acelerar la velocidad de difusión del Cr(VI) a través de la matriz de alginato de calcio. Además, al reducir la concentración de estos reactivos se economiza la producción del biocatalizador. La densidad de la suspensión a inmovilizar, antes de mezclarse con la solución de alginato de sodio, fue de 54g/L. La densidad final fue entonces de 27g biomasa seca/L. Las células inmovilizadas fueron empaquetadas en una columna de 1L (ver apartado 2.3 del Capítulo III). Se bombearon dos aguas residuales industriales, AR 1 y AR 2, de 0,26 y 0,69ppm de Cr(VI) respectivamente (ver composición en apéndice D) y suplementadas con 200ppm (1,1mM) de glucosa con un caudal de 7mL/min a través de la columna de manera de establecer un tiempo de retención hidráulico de 30 minutos (Fig. 1). La concentración del dador de electrones se disminuyó con respecto a los ensayos anteriores ya que la concentración de Cr(VI) en el líquido a tratar fue menor. El volumen de columna fue de 0,21L.
Al tratar al agua residual AR 1, se observó que la concentración de Cr(VI) era indetectable en el agua tratada (Fig. 2a) a la salida de la columna. Sin embargo, al tratar a AR 2 se observó una acumulación de Cr(VI) a medida que transcurría el tratamiento, alcanzando una concentración de 0,1ppm en 17 horas (Fig. 2b). Por lo tanto, de manera de evitar esta acumulación de Cr(VI), se procedió a realizar un tratamiento en el cual se trató a las dos aguas alternativamente: cada 10 horas de tratamiento de AR 2, el afluente fue cambiado por AR 1 que circulaba por la columna durante 14 horas antes de cambiar el afluente nuevamente por AR 2 (Fig. 3a y b).

Fig. 1: Esquema del sistema de tratamiento. Las flechas rojas indican el sentido del flujo de agua. El diámetro de la columna era de 8cm.
Fig. 2: Tratamiento de AR 1 (a) y AR 2 (b) especificando la concentración de Cr(VI) del agua a la entrada (influent) y a la salida (efluent) de la columna.
Fig 3: Variación de la concentración de Cr(VI) del afluente y efluente de la columna en función del tiempo (a) y el volumen tratado (b) durante el tratamiento de las aguas AR 1 y AR 2.
Bajo este esquema de tratamiento, se utilizó al agua residual con menor cantidad de Cr(VI) (AR 1) para “lavar” la columna, evitando la saturación de la misma que se produce al tratar a AR 2 por más de 10 horas en continuo. En total, se trató un volumen igual a 200 volúmenes de columna (VC) (42L): 88 VC (18,4L) correspondieron AR 2 y 112 VC (23,52L) a AR 1. En ningún momento se detectó Cr(III) en el líquido tratado que fue medido como en el apartado 3 del Capítulo III. El tratamiento duró 96,5 horas. Como puede observarse, el tratamiento abarcó una semana. Al llegar el fin de semana, las bacterias quedaron suspendidas en el agua residual sin recirculación y, al reanudar el tratamiento, la mayor parte de la actividad cromatoreductasa se había perdido.

2. Reducción de costos del tratamiento

2.1 Disminución de la concentración bacteriana a inmovilizar

Para reducir los costos del tratamiento, se redujo la concentración de bacterias inmovilizadas de manera de utilizar un menor volumen de medio de cultivo. La densidad de la suspensión celular a inmovilizar fue de 42,7g/L resultando en una concentración celular luego de la inmovilización de 21,4g/L. Se observó en este caso que la acumulación de Cr(VI) al tratar AR 2 se producía más rápidamente (a las 4,5 horas) que utilizando una concentración de bacterias más elevada como en 1.1 (Fig. 4).

![Fig. 4: Tratamiento de AR 2 con menor concentración de bacterias en la suspensión a inmovilizar (42g/L)](image-url)
La acumulación de Cr(VI) al tratar AR 2 se produjo en 4,5 horas mientras que con 54g/L de bacterias en la suspensión a inmovilizar la misma acumulación se produjo en 17 horas.

2.2 Disminución de la concentración del dador de electrones

En el experimento del apartado 1.1 el tratamiento se realizó utilizando 200ppm (1,1mM) de glucosa como dador de electrones. De manera de disminuir el consumo de este reactivo se procedió a tratar las aguas con 20ppm (0,11mM) de glucosa. En las primeras 50 horas se trataron ambas aguas residuales suplementadas con 20ppm de glucosa. Al alcanzar una concentración de 0,1ppm de Cr(VI) en el efluente a la hora 50, se lavó la columna con AR 1 suplementado también con 20ppm de glucosa por 21 horas. Luego del lavado (hora 71 del tratamiento) se cambió el afluente por AR 2 suplementado esta vez con 200ppm del dador de electrones y, luego de dos horas de tratamiento, se suplementó nuevamente con 20ppm de glucosa para confirmar si se producía una disminución de la actividad del biocatalizador al disminuir la concentración de glucosa. Efectivamente, a las dos horas de la disminución en la concentración de glucosa (hora 75 del tratamiento), el Cr(VI) se acumuló hasta 0,1ppm por lo que se procedió a lavar la columna con AR 1 nuevamente y se continuó tratando a ambas aguas residuales: AR 2 suplementado con 200ppm de glucosa y AR 1 con 20ppm del dador de electrones (Fig. 5). Pudo observarse que al tratar a AR 2 con 200ppm de glucosa la acumulación de Cr(VI) en la columna se produjo luego de un tiempo de tratamiento mayor que al tratar a AR 2 con 20ppm del dador de electrones. Entre la hora 93 y 113, el Cr(VI) no se acumuló en la columna y entre las horas 127 y 137 el aumento en la concentración de Cr(VI) del efluente fue aumentando lentamente al tratar a AR 2. Probablemente, en los tiempos iniciales del tratamiento, compuestos oxidables unidos a las bacterias funcionaron como daadores de electrones junto con la glucosa agregada (en el Capítulo II se hizo referencia a esto al observar la reducción de Cr(VI) con células en suspensión en ausencia del dador de electrones). Al consumirse estos compuestos, la glucosa agregada (20ppm) no fue suficiente para asegurar una alta tasa de reducción produciendo la acumulación de Cr(VI) en la columna (hora 50 del tratamiento). El agregado de una mayor concentración de glucosa solucionó este problema aumentando la tasa de reducción y disminuyendo, por lo tanto, la tasa de acumulación de Cr(VI) en la columna.
Bajo este esquema de tratamiento se pudieron tratar en total 314 VC (66L): 138 VC (29L) correspondieron a AR 2 y 176 VC (37L) a AR 1.

2.3 Sustitución del medio de cultivo

A fin de economizar la producción de biomasa se procedió a probar diferentes medios de cultivo a base de melaza de caña de azúcar (El Trébol) y de glicerol ácido proveniente de una fábrica de biodiesel de Malvinas Argentinas, Buenos Aires. La melaza es un subproducto de la producción de azúcar compuesta mayoritariamente por glucosa mientras que el glicerol es un subproducto de la producción de biodiesel. Ambos sustratos se caracterizan por ser de muy bajo costo. Como fuente de nitrógeno y de otros micronutrientes se utilizó un fertilizante comercial (Afital macro-micro) (ver apéndice C). Todos los medios
de cultivo fueron llevados a pH 7 con NaOH 6M ya que la adición del fertilizante acidificaba el medio.

Se inocularon 10 mL de medio de cultivo alternativo, compuesto por distintas concentraciones de melaza de caña (1%, 0,5% y 0,1%m/v) y fertilizante 0,6%v/v, desde un cultivo en medio semi-sólido de *P. veronii* 2E. No se observó crecimiento luego de 48 horas de cultivo por lo que se prepararon pre-inóculos en 10mL de caldo nutritivo a 32°C con 120rpm de agitación. Luego de 24 horas de cultivo, 5mL del pre-inóculo se agregaron a 45mL de cada medio alternativo estéril. Se midió la absorbancia a 600nm de cada cultivo luego de 24 y 48 horas (Fig. 6).

![Fig. 6: Crecimiento en distintas concentraciones de melaza y 0,6%v/v de fertilizante y en caldo nutritivo (C.N.) a 24 y 48 hs.](image)

Debido a los bajos rendimientos obtenidos, comparados con el que se obtiene con un medio nutritivo comercial, se ensayaron medios con otras composiciones de melaza (0,1, 0,5, 1 y 2%m/v) y fertilizante (0, 0,6 y 1,2%v/v). Los resultados de los máximos crecimientos encontrados se ven en la Figura 7.
De estos resultados se desprende que el mejor medio de cultivo alternativo es el que contiene 0,6% v/v de fertilizante y 2% m/v de melaza ya que posee un rendimiento comparable al caldo nutritivo.

Los ensayos con glicerol ácido se realizaron inoculando 1mL de cultivo *overnight* (32°C, 120rpm) de *P. veronii* 2E en caldo nutritivo, en 9 mL de un medio con glicerol a distintas concentraciones (1%, 2%, 5% y 10%v/v) y fertilizante al 0,6%v/v. Los cultivos se incubaron por 72 horas a 32°C con agitación. Debido a que los cultivos presentaron formación de grumos, el crecimiento se determinó por peso seco de la masa bacteriana generada en los 10mL del cultivo. Para esto, los 10mL de cada cultivo se centrifugaron a 6300g por 10 minutos y los pellets obtenidos se secaron hasta peso constante a 60°C. La Figura 8 resume los resultados.
A fin de comparar los resultados de la Fig. 8 con los obtenidos con melaza al 2%m/v y fertilizante al 0,6%v/v y con caldo nutritivo (Fig. 7), se inocularon 9 mL de cada uno de estos medios con 1mL de cultivo en caldo nutritivo de P. veronii 2E overnight (32°C y 120rpm). Luego de 24 horas, los cultivos fueron centrífugados a 6300g por 10 minutos y los pellets se secaron a 60°C hasta peso constante. La Figura 9 muestra los resultados obtenidos.
Puede observarse el mayor crecimiento obtenido con glicerol en comparación con los otros medios de cultivo.

2.4 Biotransformación de Cr(VI) con células inmovilizadas en alginato de calcio cultivadas en glicerol 5%v/v.

Utilizando células de P. veronii 2E cultivadas en glicerol 5%v/v y en 0,6%v/v de fertilizante, se trataron en lotes consecutivos aguas residuales sintéticas ahora con un contenido de Cr(VI) de 40ppm. Se eligió esta concentración tan alta porque ésta era la presente en el agua residual de una empresa productora de ácido crómico. Se realizaron 2 pre-inóculos de 10mL de P. veronii 2E en caldo nutritivo a 32°C y 24 horas de incubación con 120rpm de agitación. A partir de estos cultivos, se iniciaron dos cultivos de 100mL cada uno en glicerol 5%v/v y fertilizante 0,6%v/v. La incubación se realizó por 72 horas a 32°C con agitación. Luego de este periodo las células fueron cosechadas por centrifugación (6300g, 15 minutos) y resuspendidas en 40mL de agua destilada. Esta suspensión (densidad 56g biomasa/L) se mezcló con 40mL de una solución de alginato de sodio 1%m/v y se goteó sobre una solución de CaCl₂ 0,05M a 4°C. Las esferas de alginato de calcio formadas reposaron en esta solución por 15 minutos a 4°C. Luego fueron lavadas con agua destilada y
usadas inmediatamente en ensayos de biotransformación de Cr(VI) en presencia de 1% v/v de glicerol ácido como dador de electrones. El pH de la solución fue ajustado con NaOH 6M a pH 7 previo al ensayo. La incubación se realizó a 32°C con agitación. Una vez que la concentración de Cr(VI) fue indetectable en el sobrenadante, las células inmovilizadas fueron suspendidas en otra solución de las mismas características (40 ppm Cr(VI), 1% v/v glicerol ácido y pH 7). Este procedimiento se repitió durante 5 ciclos (Fig. 10).

Fig. 10: Tratamiento en lotes consecutivos de un agua residual sintética con *P. veronii* 2E inmovilizada cultivada en glicerol ácido 5% v/v.

Puede observarse la pérdida de actividad cromatoreductasa con cada ciclo de reducción de Cr(VI). El biocatalizador resultó eficiente por cuatro ciclos de hasta nueve horas. El quinto ciclo necesitaría de por lo menos 12 horas para que la concentración de Cr(VI) alcance niveles permitidos para el vertido del agua residual. No se encontró Cr(III) en los sobrenadantes tratados.
Discusión

Numerosos autores proponen diversos tratamientos de aguas residuales que contienen Cr(VI). Qu et al (2014) investigan el uso de bacterias magnetotácticas para la remoción de Cr(VI) por adsorción. La gran ventaja de este sistema es la fácil separación del adsorbente del agua residual por aplicación de un campo magnético que hace innecesaria la inmovilización. Yu et al (2014) emplean nanopartículas de hierro cero-valente para la reducción de Cr(VI). Este método tiene la ventaja de la fácil remoción del catalizador al aplicar un campo magnético y la alta tasa de reducción que se obtiene. Gopalakannan et al (2015) utilizaron nanopartículas de magnetita inmovilizadas en alginato entrecruzado con cationes Ce(III) para la remoción por adsorción del Cr(VI). Este adsorbente presentó una mayor capacidad adsorbiva que el alginato de cerio y las nanopartículas de magnetita por separado. Sin embargo, pocos estudios realizan una evaluación económica de los métodos propuestos. En el presente trabajo, la búsqueda de reducir los costos del tratamiento fue una constante. Los experimentos en los que se redujo la cantidad de biomasa inmovilizada o se disminuyó la concentración de glucosa como dador de electrones en el tratamiento de aguas residuales reales, produjeron bajas tasas de reducción por lo que estas variantes fueron desechadas como alternativas para economizar el proceso. Por lo tanto, se evaluó la producción de biomasa con medios de cultivo económicos utilizando melaza de caña de azúcar o glicerol como fuente de carbono y energía y un fertilizante comercial como fuente de nitrógeno. La melaza de caña produjo rendimientos comparables a los obtenidos con caldo nutritivo cuando se encontraba a una concentración del 2%m/v y con 0,6%v/v de fertilizante en 24 horas de cultivo. El glicerol, en cambio, produjo una densidad aproximadamente dos veces mayor que la obtenida en caldo nutritivo cuando se utilizó una concentración del 5%v/v y 0,6%v/v del fertilizante aunque se necesitaron 72 horas de cultivo. Sin embargo, aunque la masa bacteriana fue mayor con glicerol, la productividad fue la menor: 1,52mg biomasa seca/h mientras que con melaza y caldo nutritivo la productividad fue de 1,87mg biomasa seca/h y 2,06mg biomasa seca/h respectivamente. El trabajo de Moita et al (2014) es un ejemplo del uso de glicerol como fuente de carbono y energía aunque el propósito en este caso no era la producción de biomasa sino la producción de polihidroxialcanoatos. La productividad de biomasa obtenida en ese estudio fue de 11,25mg/h utilizando 0,92g/L de glicerol en reactores de volumen de trabajo de 1500L. Srikanth et al (2014) utilizan melaza como fuente de carbono y energía para la producción
de biomasa fúngica y pululano, un exopolisacárido utilizado en la industria alimenticia y farmacéutica. En ese estudio se obtienen cultivos con una concentración de 1,25g/L utilizando melaza al 5% m/v. Han et al (2012) utilizan la fermentación de la melaza para la producción de hidrógeno utilizando cultivos mixtos inmovilizados en biorreactores. Esta amplia cantidad de trabajos en la que se utilizan sustratos económicos para la generación de biomasa y productos destacan la relevancia de la investigación sobre este tema.
Conclusión

En el presente capítulo se utilizó al biocatalizador inmovilizado para tratar un agua residual real de manera continua. Durante el tratamiento se observó una acumulación progresiva del Cr(VI) en la columna por lo que se tuvo que proceder a un lavado de la misma utilizando un agua residual con menor concentración de Cr(VI). Alternando el tratamiento de las dos aguas residuales, se pudo tratar un volumen considerable con un bajo tiempo de retención hidráulico. Además, se evaluaron alternativas para disminuir los costos del tratamiento. En primer lugar, se evaluó disminuir la concentración bacteriana y la concentración de glucosa como dador de electrones pero los resultados no fueron satisfactorios porque se reducía notablemente la cantidad de agua que podía ser tratada. En segundo lugar, se ensayaron medios de cultivos alternativos más económicos para la producción de biomasa basados en melaza y glicerol como fuente de carbono y energía y fertilizante como fuente de nitrógeno. Ambos medios resultaron buenas alternativas para la producción económica de biomasa.
Referencias

Consideraciones finales y conclusión
En el presente trabajo se desarrolló un sistema de tratamiento biológico para aguas residuales industriales que contienen Cr(VI). En primer lugar, se estableció que el uso de células en suspensión de alta densidad era más conveniente para el tratamiento que el uso de células en crecimiento. Se observó que la densidad de la suspensión y el agregado de dadores de electrones favorecían el proceso de reducción acelerando la reacción. De las cepas testeadas Pseudomonas veronii 2E se destacó como la más eficiente presentando altas tasas de reducción de Cr(VI). En segundo lugar, se procedió a la inmovilización bacteriana en distintas matrices de manera de hacer factible el uso de este biocatalizador a nivel industrial y se desarrolló un sistema de producción de biomasa, inmovilización y tratamiento de aguas artificiales con contenido de Cr(VI) de mayor escala. Además, se investigó la remoción de Cr(III) en las células inmovilizadas. En tercer lugar, se trató un agua residual real en un sistema continuo y se exploraron alternativas de medios de cultivo más económicos de manera de hacer viable el sistema de tratamiento. Los resultados obtenidos demostraron la factibilidad de esta tecnología para el tratamiento de aguas industriales con Cr(VI) en concordancia con otros estudios revisados en este trabajo. Sin embargo, muy pocos estudios y trabajos científico hacen referencia de la viabilidad de la tecnología. Por consiguiente, se hace una evaluación de los costos de producir esta tecnología y se la compara con los costos asociados a tratamientos convencionales.

Viabilidad de la biotransformación de Cr(VI) como tratamiento de aguas residuales con contenido de cromo.

En la Argentina, el tratamiento más utilizado es la reducción química con metabisulfito de sodio y posterior precipitación del Cr(III) generado con hidróxido de sodio. La reducción se realiza en medio ácido y la precipitación es estimulada con la adición de un floculante. La Tabla 1 enumera las cantidades que se utilizan para tratar 10m³ por día de un agua residual que contiene entre 50 y 40ppm de Cr(VI):
Tabla 1: Cantidades y costo de los distintos reactivos usados para el tratamiento químico de 10m3 de agua residual con 40ppm de Cr(VI). Datos obtenidos de una empresa productora de ácido crómico de identidad reservada.

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>Cantidad (kg)</th>
<th>Precio (U$D)/ kg</th>
<th>Costo total (U$D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabisulfito de sodio</td>
<td>14</td>
<td>1,12</td>
<td>15,68</td>
</tr>
<tr>
<td>Ácido sulfúrico</td>
<td>10</td>
<td>0,5</td>
<td>5</td>
</tr>
<tr>
<td>Soda cáustica</td>
<td>10</td>
<td>1,55</td>
<td>15,5</td>
</tr>
<tr>
<td>Floculante</td>
<td>3</td>
<td>2,25</td>
<td>6,75</td>
</tr>
</tbody>
</table>

El costo total diario es de U$D 42,93 lo que hace un costo mensual de U$D 1287,9. Además, se invierten U$D 1666,67 en la disposición final de los residuos sólidos que se generan. En total, el costo del tratamiento contemplando sólo el costo de los reactivos y de la disposición final es de U$D 2954,57 mensuales.

Utilizando a *P. veronii* 2E inmovilizada en alginato de calcio y cultivada en glicerol 5%v/v y fertilizante 0,6%v/v se podrían tratar 10m3 por día durante una semana antes de renovar al biocatalizador. El sistema de tratamiento sería en lotes consecutivos. La Tabla 2 enumera la cantidad y el costo de los reactivos necesarios para esto, suponiendo que los cultivos alcanzan una densidad como la obtenida en este estudio de 9,5g biomasa/L. Para tratar 10m3 por día se necesitaría inmovilizar una suspensión de 10m3 de 55g biomasa/L de densidad. Considerando que el cultivo tendría 9,5g biomasa/L se necesitarían 60m3 de cultivo con 600L de glicerol ácido, 360L de fertilizante y 12,96kg de NaOH para neutralizar el medio. Para la inmovilización se necesitarían 100kg de alginato de sodio y 148kg de CaCl$_2$ teniendo en cuenta que se usarían 10m3 de alginato de sodio 1%m/v y 20m3 de CaCl$_2$ 0,05M. Durante el tratamiento se emplearían 500L de glicerol ácido como dador de electrones más 7,2kg de NaOH.
Tabla 2: Cantidades y costo de los distintos reactivos usados para el tratamiento biológico de 50m3 de agua residual con 40ppm de Cr(VI)

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>Cantidad (kg o L)</th>
<th>Precio (USD)/ kg o L</th>
<th>Costo total (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glicerol ácido</td>
<td>600L</td>
<td>0,1/L</td>
<td>60</td>
</tr>
<tr>
<td>Glicerol ácido (dador de electrones)</td>
<td>500L</td>
<td>0,1/L</td>
<td>50</td>
</tr>
<tr>
<td>Fertilizante</td>
<td>360L</td>
<td>0,4/L</td>
<td>144</td>
</tr>
<tr>
<td>NaOH</td>
<td>20,2kg</td>
<td>1,55/kg</td>
<td>31,3</td>
</tr>
<tr>
<td>Alginato de sodio</td>
<td>100kg</td>
<td>11/kg</td>
<td>1100</td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>148kg</td>
<td>0,2/kg</td>
<td>29,6</td>
</tr>
</tbody>
</table>

El costo total por semana sería de USD 1414,9 lo que hace un costo mensual de USD 5659,6. Este costo representa un 91,5% más que el costo del tratamiento químico indicando la inviabilidad del tratamiento biológico en este caso.

Para el tratamiento en línea de una corriente de baja concentración de Cr(VI), como en el caso de las aguas AR 1 y AR 2, a un caudal de 5m3/h con un tiempo de retención hidráulico de 30 minutos se necesitarían las siguientes cantidades de medio de cultivo, alginato de sodio y CaCl$_2$: el volumen de columna sería de 2,5m3 por lo que se necesitaría una suspensión bacteriana de 6m3 a una densidad de 55g biomasa/L. Por lo tanto, se necesitaría un cultivo de 36m3 con 360L de glicerol ácido, 216L de fertilizante y 7,8kg de NaOH. Para la inmovilización serían necesarios 60kg de alginato de sodio y 88,8kg de CaCl$_2$. Durante el tratamiento se necesitarían 7950L de glicerol ácido como dador de electrones para tratar 785m3 de agua residual más 113kg de NaOH. La Tabla 3 resume los costos de este tratamiento con respecto a la materia prima.
El costo total del tratamiento sería de USD 1782,4 por 785m3 de agua tratada (345m3 de AR2 y 440m3 de AR1). Considerando sólo los costos del ácido sulfúrico, la soda cáustica y el floculante necesarios para el tratamiento químico de un agua residual como AR 1 y AR 2, se obtiene un costo de USD 2139,1 para el tratamiento de 785m3. El consumo de estos reactivos depende del volumen del agua a tratar y no de la concentración de Cr(VI) por lo que es posible extrapolar los datos de la Tabla 1. En conclusión, el tratamiento biológico es viable cuando se tratan corrientes con baja concentración de Cr(VI) ya que es más económico que el tratamiento químico. Además el volumen que será enviado a disposición final será menor con el tratamiento biológico ya que éste será el volumen que ocupen las esferas de alginato. En cambio, con el tratamiento químico, el volumen de los barros originados por la precipitación de Cr(III) es muy considerable.

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>Cantidad (kg o L)</th>
<th>Precio (USD)/ kg o L</th>
<th>Costo total (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glicerol ácido</td>
<td>360L</td>
<td>0,1/L</td>
<td>36</td>
</tr>
<tr>
<td>Glicerol ácido (dador de electrones)</td>
<td>7950L</td>
<td>0,1/L</td>
<td>795</td>
</tr>
<tr>
<td>Fertilizante</td>
<td>216L</td>
<td>0,4/L</td>
<td>86,4</td>
</tr>
<tr>
<td>NaOH</td>
<td>120,8 kg</td>
<td>1,55/kg</td>
<td>187,24</td>
</tr>
<tr>
<td>Alginato de sodio</td>
<td>60kg</td>
<td>11/kg</td>
<td>660</td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>88,8kg</td>
<td>0,2/kg</td>
<td>17,76</td>
</tr>
</tbody>
</table>

Tabla 3: Cantidades y costo de los distintos reactivos usados para el tratamiento biológico de 785m3 de agua residual de baja concentración de Cr(VI) tipo AR2 y AR1.
Conclusiones finales

Como producto del presente trabajo pueden desprenderse las siguientes conclusiones:

- El uso de suspensiones de células bacterianas en reposo altamente concentradas se adecua mejor al tratamiento de aguas residuales con Cr(VI) que el uso de células en crecimiento utilizando a *Klebsiella oxytoca* P2, *Klebsiella ornithinolytica* 1P y *Pseudomonas veronii* 2E.
- El agregado externo de dadores de electrones a suspensiones de células en reposo influye positivamente en la reacción de reducción de Cr(VI) para las cepas *K. oxytoca* P2, *K. ornithinolytica* 1P y *P. veronii* 2E. Sin embargo, mientras que para las cepas *K. oxytoca* P2 y *K. ornithinolytica* 1P el agregado de dadores de electrones es fundamental para que la reacción se produzca, para *P. veronii* 2E no lo es, pudiendo reducir el Cr(VI) a una elevada tasa incluso en ausencia de dadores de electrones, al menos durante una primera ronda de reducción.
- De las tres cepas bacterianas estudiadas (*K. oxytoca* P2, *K. ornithinolytica* 1P y *P. veronii* 2E) *P. veronii* 2E fue la que presentó una mayor tasa de reducción de Cr(VI) en una suspensión de células en reposo (36g biomasa seca/L) con 20mM de glucosa como dador de electrones.
- El pH y la temperatura óptimos de reducción de Cr(VI) para suspensiones de células en reposo de *P. veronii* 2E fue de 7 y 32°C respectivamente.
- La inmovilización de suspensiones bacterianas es muy útil para la aplicación de la biotransformación de Cr(VI) mediada por bacterias aunque se reduce la tasa de biotransformación porque se agrega un paso a la reacción: la difusión de los sustratos a través de la matriz de inmovilización.
- Las bacterias inmovilizadas pueden ser reutilizadas hasta 5 veces si se tratan aguas residuales de 1mM Cr(VI).
- Fue posible el tratamiento en línea de aguas residuales de baja concentración de Cr(VI) con un tiempo de retención hidráulico de 30 minutos usando a *P. veronii* 2E inmovilizada en alginato de calcio.
- El crecimiento de *P. veronii* 2E en medios de cultivo económicos basados en glicerol o melaza de caña como fuente de carbono y fertilizante como fuente de nitrógeno fue
factible obteniendo un mejor rendimiento en glicerol que en melaza o caldo nutritivo aunque con un tiempo de cultivo mayor.

- El tratamiento de aguas residuales de mediana concentración de Cr(VI) en lotes consecutivos utilizando a *P. veronii* 2E inmovilizada en alginato de calcio no es viable ya que su costo es mayor que el tratamiento químico convencional. En cambio, el tratamiento en línea de corrientes con bajo contenido de Cr(VI) sí resultó viable por ser más económico que el tratamiento normalmente empleado.
Apéndice A

Composición de metales del baño de ácido crómico de segundo enjuague de piezas metálicas determinado por espectrofotometría de absorción atómica:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>10g/l</td>
</tr>
<tr>
<td>Pb</td>
<td>1,3 mg/l</td>
</tr>
<tr>
<td>Cu</td>
<td>99 mg/l</td>
</tr>
<tr>
<td>Cd</td>
<td><0,05 mg/l</td>
</tr>
<tr>
<td>Zn</td>
<td>128 mg/l</td>
</tr>
</tbody>
</table>
Apéndice B

Composición de la melaza de caña (Teclu et al 2009)

<table>
<thead>
<tr>
<th>Componentes</th>
<th>% melaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>20</td>
</tr>
<tr>
<td>Sacarosa</td>
<td>35</td>
</tr>
<tr>
<td>Glucosa</td>
<td>7</td>
</tr>
<tr>
<td>Fructosa</td>
<td>9</td>
</tr>
<tr>
<td>Otras substancias reductoras</td>
<td>3</td>
</tr>
<tr>
<td>Otros carbohidratos</td>
<td>4</td>
</tr>
<tr>
<td>Cenizas</td>
<td>12</td>
</tr>
<tr>
<td>Compuestos nitrogenados</td>
<td>4,5</td>
</tr>
<tr>
<td>Ácidos no nitrogenados</td>
<td>5</td>
</tr>
<tr>
<td>Ceras, esteroles y fosfolípidos</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Referencia

Apéndice C

Composición del fertilizante Afital Macro-Micro.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Concentración (% m/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>10,00</td>
</tr>
<tr>
<td>Fósforo</td>
<td>5,00</td>
</tr>
<tr>
<td>Potasio</td>
<td>8,00</td>
</tr>
<tr>
<td>Cobre</td>
<td>0.50</td>
</tr>
<tr>
<td>Magnesio</td>
<td>0.30</td>
</tr>
<tr>
<td>Manganeso</td>
<td>0.30</td>
</tr>
<tr>
<td>Hierro</td>
<td>0.20</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.10</td>
</tr>
<tr>
<td>Boro</td>
<td>0.05</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Apéndice D

Composición de las aguas residuales industriales AR 1 y AR 2

Tabla 1: Componentes de AR 1
Tabla 2: Componentes de AR 2

<table>
<thead>
<tr>
<th></th>
<th>AR 1</th>
<th></th>
<th>AR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductividad</td>
<td>897 µs/cm</td>
<td>Conductividad</td>
<td>1121 µs/cm</td>
</tr>
<tr>
<td>Dureza</td>
<td>398 mg/l</td>
<td>Dureza</td>
<td>450 mg/l</td>
</tr>
<tr>
<td>Alcanilidad</td>
<td>421 mg/l</td>
<td>Alcalinidad</td>
<td>384 mg/l</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>54 mg/l</td>
<td>Sulfatos</td>
<td>46 mg/l</td>
</tr>
<tr>
<td>Cloruros</td>
<td>21.6 mg/l</td>
<td>Cloruros</td>
<td>81.5 mg/l</td>
</tr>
<tr>
<td>Calcio</td>
<td>93.0 mg/l</td>
<td>Calcio</td>
<td>115 mg/l</td>
</tr>
<tr>
<td>Nitratos</td>
<td>27.9 mg/l</td>
<td>Nitratos</td>
<td>78.5 mg/l</td>
</tr>
<tr>
<td>Magnesio</td>
<td>36.9 mg/l</td>
<td>Magnesio</td>
<td>44.2 mg/l</td>
</tr>
<tr>
<td>Sodio</td>
<td>48.3 mg/l</td>
<td>Sodio</td>
<td>47.3 mg/l</td>
</tr>
<tr>
<td>Silice</td>
<td>77.2 mg/l</td>
<td>Silice</td>
<td>77.4 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>8</td>
<td>pH</td>
<td>7.7</td>
</tr>
<tr>
<td>Cr(VI)</td>
<td>0.26 mg/l</td>
<td>Cr(VI)</td>
<td>0.69 mg/l</td>
</tr>
</tbody>
</table>

Tabla 1

Tabla 2